Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247411946> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4247411946 endingPage "xi" @default.
- W4247411946 startingPage "xi" @default.
- W4247411946 abstract "We study two problems related to the Small Set Expansion Conjecture (Raghavendra and Steurer, 2010): the Maximum weightm′-edge cover (MWEC) problem and the Fixed cost minimum edge cover (FCEC) problem. In the MWEC problem, we are given an undirected simple graph G=(V,E) with integral vertex weights. The goal is to select a set U⊆V of maximum weight so that the number of edges with at least one endpoint in U is at most m′. Goldschmidt and Hochbaum (1997) show that the problem is NP-hard and they give a 3-approximation algorithm for the problem. The approximation guarantee was improved to 2+ϵ, for any fixed ϵ>0 (Liang, 2013). We present an approximation algorithm that achieves a guarantee of 2. Interestingly, we also show that for any constant ϵ>0, a (2−ϵ)-ratio for MWEC implies that the Small Set Expansion Conjecture (Raghavendra and Steurer, 2010) does not hold. Thus, assuming the Small Set Expansion Conjecture, the bound of 2 is tight. In the FCEC problem, we are given a vertex weighted graph, a bound k, and our goal is to find a subset of vertices U of total weight at least k such that the number of edges with at least one edge in U is minimized. A 2(1+ϵ)-approximation for the problem follows from the work of Carnes and Shmoys (2008). We improve the approximation ratio by giving a 2-approximation algorithm for the problem and show a (2−ϵ)-inapproximability under Small Set Expansion Conjecture. Only the NP-hardness result was known for this problem (Goldschmidt and Hochbaum, 1997). We show that a natural linear program for FCEC has an integrality gap of 2−o(1). We also show that for any constant ρ>1, an approximation guarantee of ρ for the FCEC problem implies a ρ(1+o(1)) approximation for MWEC. Finally, we define the Degrees density augmentation problem which is the density version of the FCEC problem. In this problem we are given an undirected graph G=(V,E) and a set U⊆V. The objective is to find a set W so that (e(W)+e(U,W))/deg(W) is maximum. This problem admits an LP-based exact solution (Chakravarthy et al., 2012). We give a combinatorial algorithm for this problem." @default.
- W4247411946 created "2022-05-12" @default.
- W4247411946 creator A5021656163 @default.
- W4247411946 date "2004-09-01" @default.
- W4247411946 modified "2023-10-14" @default.
- W4247411946 title "Dedication" @default.
- W4247411946 doi "https://doi.org/10.1016/j.ccm.2004.06.006" @default.
- W4247411946 hasPublicationYear "2004" @default.
- W4247411946 type Work @default.
- W4247411946 citedByCount "0" @default.
- W4247411946 crossrefType "journal-article" @default.
- W4247411946 hasAuthorship W4247411946A5021656163 @default.
- W4247411946 hasConcept C111472728 @default.
- W4247411946 hasConcept C114614502 @default.
- W4247411946 hasConcept C118615104 @default.
- W4247411946 hasConcept C127413603 @default.
- W4247411946 hasConcept C132525143 @default.
- W4247411946 hasConcept C134306372 @default.
- W4247411946 hasConcept C138885662 @default.
- W4247411946 hasConcept C148764684 @default.
- W4247411946 hasConcept C165526019 @default.
- W4247411946 hasConcept C2780428219 @default.
- W4247411946 hasConcept C2780586882 @default.
- W4247411946 hasConcept C2780990831 @default.
- W4247411946 hasConcept C3018234147 @default.
- W4247411946 hasConcept C33923547 @default.
- W4247411946 hasConcept C40687702 @default.
- W4247411946 hasConcept C77553402 @default.
- W4247411946 hasConcept C78519656 @default.
- W4247411946 hasConcept C80899671 @default.
- W4247411946 hasConceptScore W4247411946C111472728 @default.
- W4247411946 hasConceptScore W4247411946C114614502 @default.
- W4247411946 hasConceptScore W4247411946C118615104 @default.
- W4247411946 hasConceptScore W4247411946C127413603 @default.
- W4247411946 hasConceptScore W4247411946C132525143 @default.
- W4247411946 hasConceptScore W4247411946C134306372 @default.
- W4247411946 hasConceptScore W4247411946C138885662 @default.
- W4247411946 hasConceptScore W4247411946C148764684 @default.
- W4247411946 hasConceptScore W4247411946C165526019 @default.
- W4247411946 hasConceptScore W4247411946C2780428219 @default.
- W4247411946 hasConceptScore W4247411946C2780586882 @default.
- W4247411946 hasConceptScore W4247411946C2780990831 @default.
- W4247411946 hasConceptScore W4247411946C3018234147 @default.
- W4247411946 hasConceptScore W4247411946C33923547 @default.
- W4247411946 hasConceptScore W4247411946C40687702 @default.
- W4247411946 hasConceptScore W4247411946C77553402 @default.
- W4247411946 hasConceptScore W4247411946C78519656 @default.
- W4247411946 hasConceptScore W4247411946C80899671 @default.
- W4247411946 hasIssue "3" @default.
- W4247411946 hasLocation W42474119461 @default.
- W4247411946 hasOpenAccess W4247411946 @default.
- W4247411946 hasPrimaryLocation W42474119461 @default.
- W4247411946 hasRelatedWork W1493672327 @default.
- W4247411946 hasRelatedWork W1565889796 @default.
- W4247411946 hasRelatedWork W2057668757 @default.
- W4247411946 hasRelatedWork W2998846726 @default.
- W4247411946 hasRelatedWork W3144152243 @default.
- W4247411946 hasRelatedWork W3216169553 @default.
- W4247411946 hasRelatedWork W4286851273 @default.
- W4247411946 hasRelatedWork W4287250053 @default.
- W4247411946 hasRelatedWork W4290190164 @default.
- W4247411946 hasRelatedWork W4294702976 @default.
- W4247411946 hasVolume "25" @default.
- W4247411946 isParatext "false" @default.
- W4247411946 isRetracted "false" @default.
- W4247411946 workType "article" @default.