Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247565721> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4247565721 endingPage "1655" @default.
- W4247565721 startingPage "1655" @default.
- W4247565721 abstract "Iridium Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts Shaun M. Alia, 1 Sarah Shulda, 2 Chilan Ngo, 2 Svitlana Pylypenko, 2 Bryan S. Pivovar 1 1 Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401 2 Department of Chemistry, Colorado School of Mines, Golden, CO 80401 shaun.alia@nrel.gov In the United States, 2% of energy used goes through the hydrogen pathway, to produce ammonia in agriculture and upgrade oil in transportation. [1, 2] While most hydrogen is produced by steam methane reformation, electrolysis can become competitive with the use of low-cost renewable power sources. Further reductions in the cost of renewables may increase hydrogen use as an energy intermediate between the electric grid and transportation and industrial processes. [3] Electrolyzers today operate at high capacity and with constant power input. A shift toward intermittent renewables and a focus on hydrogen production cost, however, increases the importance of catalyst thrifting and durability in the oxygen evolution reaction (OER). [2] Iridium or iridium oxide nanoparticles are typically used as OER catalysts, but are limited in activity and durability, particularly at low loading. [4] Iridium-nickel and iridium-cobalt nanowires have been developed as OER electrocatalysts for proton exchange membrane-based electrolyzers. These catalysts use similar templates and synthesis routes previously used in the development of fuel cell oxygen reduction electrocatalysts. [5] A previous comparison between polycrystalline iridium and nanoparticles suggests that extended structures can potentially benefit from higher site-specific activity. [4] Differences between the nanowire templates affect catalyst composition, structure, and OER activity. While these materials exceed the performance of iridium nanoparticles, acid leaching is necessary to minimize template dissolution and improve durability. The acid leached catalysts exceed the half-cell activity of nanoparticles by an order of magnitude, and the half-cell mass activity of any catalyst available in literature by 4 times. In membrane electrode assemblies, the nanowires also outperform traditional iridium catalysts by 4‒5 times in single-cell electrolyzers. Figure caption. Surface areas (ECA, x-axis) and specific OER activity (i s , y-axis) of acid leached iridium-nickel (Ir-Ni) nanowires, iridium-cobalt (Ir-Co) nanowires, iridium nanoparticles (Ir), and iridium oxide nanoparticles (IrO 2 ). Solid black lines correspond to constant mass activities of 0.3, 1, and 3 A mg Ir ‒1 at 1.55 V. Nanowire compositions are listed as-synthesized (in parentheses) and following acid leaching (immediately following parentheses). References [1] A. Milbrandt and M. Mann, ed. U. S. Department of Energy, http://www.nrel.gov/docs/fy09osti/42773.pdf, 2009. [2] U. S. Department of Energy, https://www.hydrogen.energy.gov/pdfs/review16/2016_amr_h2_at_scale.pdf, 2016. [3] P. Denholm, M. O'Connell, G. Brinkman and J. Jorgenson, ed. U. S. Department of Energy, http://www.nrel.gov/docs/fy16osti/65023.pdf, 2015, vol. NREL/TP-6A20-65023, ch. NREL/TP-6A20-65023. [4] S. M. Alia, B. Rasimick, C. Ngo, K. C. Neyerlin, S. S. Kocha, S. Pylypenko, H. Xu and B. S. Pivovar, Journal of The Electrochemical Society, 2016, 163, F3105-F3112. [5] S. M. Alia, Y. S. Yan and B. S. Pivovar, Catalysis Science & Technology, 2014, 4, 3589-3600. Figure 1" @default.
- W4247565721 created "2022-05-12" @default.
- W4247565721 creator A5031991573 @default.
- W4247565721 creator A5035132592 @default.
- W4247565721 creator A5041273972 @default.
- W4247565721 creator A5063686728 @default.
- W4247565721 creator A5090914666 @default.
- W4247565721 date "2017-09-01" @default.
- W4247565721 modified "2023-10-14" @default.
- W4247565721 title "Iridium Nanowires As Highly Active, Oxygen Evolution Reaction Electrocatalysts" @default.
- W4247565721 doi "https://doi.org/10.1149/ma2017-02/37/1655" @default.
- W4247565721 hasPublicationYear "2017" @default.
- W4247565721 type Work @default.
- W4247565721 citedByCount "1" @default.
- W4247565721 countsByYear W42475657212018 @default.
- W4247565721 crossrefType "journal-article" @default.
- W4247565721 hasAuthorship W4247565721A5031991573 @default.
- W4247565721 hasAuthorship W4247565721A5035132592 @default.
- W4247565721 hasAuthorship W4247565721A5041273972 @default.
- W4247565721 hasAuthorship W4247565721A5063686728 @default.
- W4247565721 hasAuthorship W4247565721A5090914666 @default.
- W4247565721 hasConcept C119599485 @default.
- W4247565721 hasConcept C127413603 @default.
- W4247565721 hasConcept C135473242 @default.
- W4247565721 hasConcept C147789679 @default.
- W4247565721 hasConcept C161790260 @default.
- W4247565721 hasConcept C171250308 @default.
- W4247565721 hasConcept C17525397 @default.
- W4247565721 hasConcept C178790620 @default.
- W4247565721 hasConcept C185592680 @default.
- W4247565721 hasConcept C188573790 @default.
- W4247565721 hasConcept C192562407 @default.
- W4247565721 hasConcept C202189072 @default.
- W4247565721 hasConcept C35590869 @default.
- W4247565721 hasConcept C42360764 @default.
- W4247565721 hasConcept C528581852 @default.
- W4247565721 hasConcept C52859227 @default.
- W4247565721 hasConcept C65165184 @default.
- W4247565721 hasConcept C74214498 @default.
- W4247565721 hasConceptScore W4247565721C119599485 @default.
- W4247565721 hasConceptScore W4247565721C127413603 @default.
- W4247565721 hasConceptScore W4247565721C135473242 @default.
- W4247565721 hasConceptScore W4247565721C147789679 @default.
- W4247565721 hasConceptScore W4247565721C161790260 @default.
- W4247565721 hasConceptScore W4247565721C171250308 @default.
- W4247565721 hasConceptScore W4247565721C17525397 @default.
- W4247565721 hasConceptScore W4247565721C178790620 @default.
- W4247565721 hasConceptScore W4247565721C185592680 @default.
- W4247565721 hasConceptScore W4247565721C188573790 @default.
- W4247565721 hasConceptScore W4247565721C192562407 @default.
- W4247565721 hasConceptScore W4247565721C202189072 @default.
- W4247565721 hasConceptScore W4247565721C35590869 @default.
- W4247565721 hasConceptScore W4247565721C42360764 @default.
- W4247565721 hasConceptScore W4247565721C528581852 @default.
- W4247565721 hasConceptScore W4247565721C52859227 @default.
- W4247565721 hasConceptScore W4247565721C65165184 @default.
- W4247565721 hasConceptScore W4247565721C74214498 @default.
- W4247565721 hasIssue "37" @default.
- W4247565721 hasLocation W42475657211 @default.
- W4247565721 hasOpenAccess W4247565721 @default.
- W4247565721 hasPrimaryLocation W42475657211 @default.
- W4247565721 hasRelatedWork W2517928179 @default.
- W4247565721 hasRelatedWork W2967381535 @default.
- W4247565721 hasRelatedWork W3087420890 @default.
- W4247565721 hasRelatedWork W4200148939 @default.
- W4247565721 hasRelatedWork W4206594512 @default.
- W4247565721 hasRelatedWork W4235297892 @default.
- W4247565721 hasRelatedWork W4244574664 @default.
- W4247565721 hasRelatedWork W4292764440 @default.
- W4247565721 hasRelatedWork W4320916099 @default.
- W4247565721 hasRelatedWork W4361854705 @default.
- W4247565721 hasVolume "MA2017-02" @default.
- W4247565721 isParatext "false" @default.
- W4247565721 isRetracted "false" @default.
- W4247565721 workType "article" @default.