Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247709320> ?p ?o ?g. }
Showing items 1 to 43 of
43
with 100 items per page.
- W4247709320 abstract "<div> In recent years, artificial neural networks (ANNs) have won numerous contests in pattern recognition, machine learning, and artificial intelligence. Neuron in ANNs is designed by the Knowledge about the biological neurons in the brain 70 years ago.Neuron in ANNs is expressed as f(wx+b) or f(WX). The design of this architecture does not consider the information processing capabilities of dendrites. However, recently, studies shows that dendrites participate in the pre-calculation of input data in the brain. Concretely, biological dendrites play a role in the pre-processing for the interaction information of input data. Therefore, it may be time to perfect the neuron of ANNs. According to our previous studies (Gang transform), this paper adds the dendrite processing section to neurons of ANNs. The dendrite processing section can be expressed as W<sup>i,i-1</sup>A<sup>i-1</sup> ○ A<sup>0|1|2|...|i-1</sup> . The generalized new neuron can be expressed as f(W(W<sup>i,i-1</sup>A<sup>i-1</sup> ○ A<sup>0|1|2|...|i-1</sup>)) .The simplified new neuron be expressed as f(∑(WA ○ X)) . After perfecting the neuron, there are so many networks to try. This paper shows some basic architecture for reference in the future. </div><div> </div><div> Interesting things: (1) The computational complexity of dendrite modules (W<sup>i,i-1</sup>A<sup>i-1</sup> ○ A<sup>i-1</sup>) after being connected in series is far lower than Horner's method. Will this speed up the calculation of basic functions in computers? (2) The range of sight of animals has a gradient, but the convolution layer does not have this characteristic. This paper proposes receptive fields with gradient. (3) The networks using Gang neurons can delete the full connectional layer of traditional networks. In other words, the parameters of the full connectional layers are assigned to a single neuron, which reduces parameters of a network for the same mapping capacity.</div>" @default.
- W4247709320 created "2022-05-12" @default.
- W4247709320 creator A5014452104 @default.
- W4247709320 date "2020-08-15" @default.
- W4247709320 modified "2023-10-05" @default.
- W4247709320 title "It may be time to perfect the neuron of artificial neural network" @default.
- W4247709320 doi "https://doi.org/10.36227/techrxiv.12477266.v5" @default.
- W4247709320 hasPublicationYear "2020" @default.
- W4247709320 type Work @default.
- W4247709320 citedByCount "0" @default.
- W4247709320 crossrefType "posted-content" @default.
- W4247709320 hasAuthorship W4247709320A5014452104 @default.
- W4247709320 hasBestOaLocation W42477093201 @default.
- W4247709320 hasConcept C154945302 @default.
- W4247709320 hasConcept C169760540 @default.
- W4247709320 hasConcept C2776990819 @default.
- W4247709320 hasConcept C2778794669 @default.
- W4247709320 hasConcept C41008148 @default.
- W4247709320 hasConcept C50644808 @default.
- W4247709320 hasConcept C86803240 @default.
- W4247709320 hasConceptScore W4247709320C154945302 @default.
- W4247709320 hasConceptScore W4247709320C169760540 @default.
- W4247709320 hasConceptScore W4247709320C2776990819 @default.
- W4247709320 hasConceptScore W4247709320C2778794669 @default.
- W4247709320 hasConceptScore W4247709320C41008148 @default.
- W4247709320 hasConceptScore W4247709320C50644808 @default.
- W4247709320 hasConceptScore W4247709320C86803240 @default.
- W4247709320 hasLocation W42477093201 @default.
- W4247709320 hasOpenAccess W4247709320 @default.
- W4247709320 hasPrimaryLocation W42477093201 @default.
- W4247709320 hasRelatedWork W10924315 @default.
- W4247709320 hasRelatedWork W11375610 @default.
- W4247709320 hasRelatedWork W12601666 @default.
- W4247709320 hasRelatedWork W1347062 @default.
- W4247709320 hasRelatedWork W13747797 @default.
- W4247709320 hasRelatedWork W2084237 @default.
- W4247709320 hasRelatedWork W519093 @default.
- W4247709320 hasRelatedWork W5765845 @default.
- W4247709320 hasRelatedWork W7070017 @default.
- W4247709320 hasRelatedWork W7607512 @default.
- W4247709320 isParatext "false" @default.
- W4247709320 isRetracted "false" @default.
- W4247709320 workType "article" @default.