Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247883513> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4247883513 endingPage "1625" @default.
- W4247883513 startingPage "1609" @default.
- W4247883513 abstract "DNA Microarrays allow for monitoring the expression level of thousands of genes simultaneously across a collection of related samples. Supervised learning algorithms such as k-NN or SVM (Support Vector Machines) have been applied to the classification of cancer samples with encouraging results. However, the classification algorithms are not able to discover new subtypes of diseases considering the gene expression profiles. In this chapter, the author reviews several supervised clustering algorithms suitable to discover new subtypes of cancer. Next, he introduces a semi-supervised clustering algorithm that learns a linear combination of dissimilarities from the a priory knowledge provided by human experts. A priori knowledge is formulated in the form of equivalence constraints. The minimization of the error function is based on a quadratic optimization algorithm. A L2 norm regularizer is included that penalizes the complexity of the family of distances and avoids overfitting. The method proposed has been applied to several benchmark data sets and to human complex cancer problems using the gene expression profiles. The experimental results suggest that considering a linear combination of heterogeneous dissimilarities helps to improve both classification and clustering algorithms based on a single similarity." @default.
- W4247883513 created "2022-05-12" @default.
- W4247883513 creator A5016296499 @default.
- W4247883513 date "2013-04-01" @default.
- W4247883513 modified "2023-09-23" @default.
- W4247883513 title "Semi-Supervised Clustering for the Identification of Different Cancer Types Using the Gene Expression Profiles" @default.
- W4247883513 cites W1510073064 @default.
- W4247883513 cites W1873158149 @default.
- W4247883513 cites W1988424388 @default.
- W4247883513 cites W2002996130 @default.
- W4247883513 cites W2095608430 @default.
- W4247883513 cites W2096100960 @default.
- W4247883513 cites W2122672385 @default.
- W4247883513 cites W2161444669 @default.
- W4247883513 cites W2162972849 @default.
- W4247883513 cites W4235169531 @default.
- W4247883513 cites W53387266 @default.
- W4247883513 doi "https://doi.org/10.4018/978-1-4666-3604-0.ch084" @default.
- W4247883513 hasPublicationYear "2013" @default.
- W4247883513 type Work @default.
- W4247883513 citedByCount "0" @default.
- W4247883513 crossrefType "book-chapter" @default.
- W4247883513 hasAuthorship W4247883513A5016296499 @default.
- W4247883513 hasConcept C111472728 @default.
- W4247883513 hasConcept C116834253 @default.
- W4247883513 hasConcept C119857082 @default.
- W4247883513 hasConcept C12267149 @default.
- W4247883513 hasConcept C124101348 @default.
- W4247883513 hasConcept C13280743 @default.
- W4247883513 hasConcept C138885662 @default.
- W4247883513 hasConcept C153180895 @default.
- W4247883513 hasConcept C154945302 @default.
- W4247883513 hasConcept C185798385 @default.
- W4247883513 hasConcept C205649164 @default.
- W4247883513 hasConcept C22019652 @default.
- W4247883513 hasConcept C41008148 @default.
- W4247883513 hasConcept C50644808 @default.
- W4247883513 hasConcept C59822182 @default.
- W4247883513 hasConcept C73555534 @default.
- W4247883513 hasConcept C75553542 @default.
- W4247883513 hasConcept C86803240 @default.
- W4247883513 hasConceptScore W4247883513C111472728 @default.
- W4247883513 hasConceptScore W4247883513C116834253 @default.
- W4247883513 hasConceptScore W4247883513C119857082 @default.
- W4247883513 hasConceptScore W4247883513C12267149 @default.
- W4247883513 hasConceptScore W4247883513C124101348 @default.
- W4247883513 hasConceptScore W4247883513C13280743 @default.
- W4247883513 hasConceptScore W4247883513C138885662 @default.
- W4247883513 hasConceptScore W4247883513C153180895 @default.
- W4247883513 hasConceptScore W4247883513C154945302 @default.
- W4247883513 hasConceptScore W4247883513C185798385 @default.
- W4247883513 hasConceptScore W4247883513C205649164 @default.
- W4247883513 hasConceptScore W4247883513C22019652 @default.
- W4247883513 hasConceptScore W4247883513C41008148 @default.
- W4247883513 hasConceptScore W4247883513C50644808 @default.
- W4247883513 hasConceptScore W4247883513C59822182 @default.
- W4247883513 hasConceptScore W4247883513C73555534 @default.
- W4247883513 hasConceptScore W4247883513C75553542 @default.
- W4247883513 hasConceptScore W4247883513C86803240 @default.
- W4247883513 hasLocation W42478835131 @default.
- W4247883513 hasOpenAccess W4247883513 @default.
- W4247883513 hasPrimaryLocation W42478835131 @default.
- W4247883513 hasRelatedWork W13034104 @default.
- W4247883513 hasRelatedWork W17591580 @default.
- W4247883513 hasRelatedWork W18644952 @default.
- W4247883513 hasRelatedWork W19235576 @default.
- W4247883513 hasRelatedWork W2873872 @default.
- W4247883513 hasRelatedWork W5405742 @default.
- W4247883513 hasRelatedWork W6035831 @default.
- W4247883513 hasRelatedWork W728297 @default.
- W4247883513 hasRelatedWork W845024 @default.
- W4247883513 hasRelatedWork W16836940 @default.
- W4247883513 isParatext "false" @default.
- W4247883513 isRetracted "false" @default.
- W4247883513 workType "book-chapter" @default.