Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247995013> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4247995013 abstract "Event Abstract Back to Event Zero-Training for Brain-Computer Interfaces Pieter-Jan Kindermans1* 1 TU-Berlin, Germany In a Brain-Computer Interface (BCI) the computer must correctly interpret the neural control signals generated by the user. In the early days, the user was trained to generate the correct control signals which required a tedious training program spanning several days to weeks. The introduction of machine learning to the field has shifted the training process from the user to the computer. Current systems rely on the recording of a calibration dataset. During this recording the user is instructed to perform a specific mental task at a specific point in time. In turn, this allows us to label the EEG with the user’s intention. The calibration dataset can then be used to teach the computer how to decode the user’s EEG. This machine learning based workflow has significantly reduced the training time and depending on the paradigm, a user can utilise a BCI within 10-30 minutes after the EEG cap has been set up. In spite of this vast reduction in training time, the calibration of the BCI remains a major hindrance. This is true for a patient, which typically has a limited attention span, and for healthy users, who expect plug and play devices. For this reason, we developed a zero-training approach to BCI. Our approach, that is tailored to ERP based BCI, comprises an unsupervised learning component and a transfer learning component. The transfer learning component ensures that we have a usable but suboptimal user-independent decoder. The unsupervised learning component on the other hand has the ability to transform this user-independent model into a high quality subject-specific decoder. In this presentation, I will discuss how zero-training BCI is possible, how transfer learning can be integrated directly into the unsupervised model and what makes transfer learning possible in ERP based BCI. Acknowledgements This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement NO 657679. This work was also supported in part by BMBF (01GQ1115). References [1] Kindermans PJ, Verstraeten D, Schrauwen B. A Bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI. PLoS ONE 2012b;7(4):e33758. doi:10.1371/journal.pone.0033758. [2] Kindermans PJ, Verschore H, Verstraeten D, Schrauwen B. A P300 BCI for the masses: Prior information enables instant unsupervised spelling. In: Advances in Neural Information Processing Systems (NIPS). 2012a. p. 719–27. [3] Kindermans PJ, Tangermann M, Müller KR, Schrauwen B. Integrating dynamic stopping, transfer learning and language models in an adaptive zero- training erp speller. Journal of Neural Engineering 2014;11(3):035005. [4] Kindermans PJ, Tangermann M, Schreuder M, Braun M, Müller KR. Towards understanding transfer learning during unsupervised brain-machine interaction. submitted Keywords: Brain-computer interface, zero-training, machine learning, unsupervised learning, Event-Related Potentials, P300 Conference: German-Japanese Adaptive BCI Workshop, Kyoto, Japan, 28 Oct - 29 Oct, 2015. Presentation Type: Oral presentation (Invited speakers) Topic: Adaptive BCI Citation: Kindermans P (2015). Zero-Training for Brain-Computer Interfaces. Front. Comput. Neurosci. Conference Abstract: German-Japanese Adaptive BCI Workshop. doi: 10.3389/conf.fncom.2015.56.00017 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 01 Oct 2015; Published Online: 04 Nov 2015. * Correspondence: Dr. Pieter-Jan Kindermans, TU-Berlin, Berlin, Germany, p.kindermans@tu-berlin.de Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Pieter-Jan Kindermans Google Pieter-Jan Kindermans Google Scholar Pieter-Jan Kindermans PubMed Pieter-Jan Kindermans Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page." @default.
- W4247995013 created "2022-05-12" @default.
- W4247995013 creator A5031762940 @default.
- W4247995013 date "2015-01-01" @default.
- W4247995013 modified "2023-10-18" @default.
- W4247995013 title "Zero-Training for Brain-Computer Interfaces" @default.
- W4247995013 doi "https://doi.org/10.3389/conf.fncom.2015.56.00017" @default.
- W4247995013 hasPublicationYear "2015" @default.
- W4247995013 type Work @default.
- W4247995013 citedByCount "0" @default.
- W4247995013 crossrefType "journal-article" @default.
- W4247995013 hasAuthorship W4247995013A5031762940 @default.
- W4247995013 hasBestOaLocation W42479950131 @default.
- W4247995013 hasConcept C107457646 @default.
- W4247995013 hasConcept C113843644 @default.
- W4247995013 hasConcept C118552586 @default.
- W4247995013 hasConcept C119857082 @default.
- W4247995013 hasConcept C121332964 @default.
- W4247995013 hasConcept C129307140 @default.
- W4247995013 hasConcept C150899416 @default.
- W4247995013 hasConcept C154945302 @default.
- W4247995013 hasConcept C15744967 @default.
- W4247995013 hasConcept C157915830 @default.
- W4247995013 hasConcept C162324750 @default.
- W4247995013 hasConcept C168167062 @default.
- W4247995013 hasConcept C173201364 @default.
- W4247995013 hasConcept C173608175 @default.
- W4247995013 hasConcept C177212765 @default.
- W4247995013 hasConcept C177264268 @default.
- W4247995013 hasConcept C187736073 @default.
- W4247995013 hasConcept C199360897 @default.
- W4247995013 hasConcept C2779662365 @default.
- W4247995013 hasConcept C2780451532 @default.
- W4247995013 hasConcept C41008148 @default.
- W4247995013 hasConcept C522805319 @default.
- W4247995013 hasConcept C62520636 @default.
- W4247995013 hasConcept C77088390 @default.
- W4247995013 hasConcept C97355855 @default.
- W4247995013 hasConceptScore W4247995013C107457646 @default.
- W4247995013 hasConceptScore W4247995013C113843644 @default.
- W4247995013 hasConceptScore W4247995013C118552586 @default.
- W4247995013 hasConceptScore W4247995013C119857082 @default.
- W4247995013 hasConceptScore W4247995013C121332964 @default.
- W4247995013 hasConceptScore W4247995013C129307140 @default.
- W4247995013 hasConceptScore W4247995013C150899416 @default.
- W4247995013 hasConceptScore W4247995013C154945302 @default.
- W4247995013 hasConceptScore W4247995013C15744967 @default.
- W4247995013 hasConceptScore W4247995013C157915830 @default.
- W4247995013 hasConceptScore W4247995013C162324750 @default.
- W4247995013 hasConceptScore W4247995013C168167062 @default.
- W4247995013 hasConceptScore W4247995013C173201364 @default.
- W4247995013 hasConceptScore W4247995013C173608175 @default.
- W4247995013 hasConceptScore W4247995013C177212765 @default.
- W4247995013 hasConceptScore W4247995013C177264268 @default.
- W4247995013 hasConceptScore W4247995013C187736073 @default.
- W4247995013 hasConceptScore W4247995013C199360897 @default.
- W4247995013 hasConceptScore W4247995013C2779662365 @default.
- W4247995013 hasConceptScore W4247995013C2780451532 @default.
- W4247995013 hasConceptScore W4247995013C41008148 @default.
- W4247995013 hasConceptScore W4247995013C522805319 @default.
- W4247995013 hasConceptScore W4247995013C62520636 @default.
- W4247995013 hasConceptScore W4247995013C77088390 @default.
- W4247995013 hasConceptScore W4247995013C97355855 @default.
- W4247995013 hasLocation W42479950131 @default.
- W4247995013 hasOpenAccess W4247995013 @default.
- W4247995013 hasPrimaryLocation W42479950131 @default.
- W4247995013 hasRelatedWork W1928693110 @default.
- W4247995013 hasRelatedWork W2088551320 @default.
- W4247995013 hasRelatedWork W2125218192 @default.
- W4247995013 hasRelatedWork W2755869494 @default.
- W4247995013 hasRelatedWork W2885034470 @default.
- W4247995013 hasRelatedWork W292274169 @default.
- W4247995013 hasRelatedWork W2923605749 @default.
- W4247995013 hasRelatedWork W2945206942 @default.
- W4247995013 hasRelatedWork W3095285701 @default.
- W4247995013 hasRelatedWork W4289530477 @default.
- W4247995013 hasVolume "9" @default.
- W4247995013 isParatext "false" @default.
- W4247995013 isRetracted "false" @default.
- W4247995013 workType "article" @default.