Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247996859> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4247996859 endingPage "216" @default.
- W4247996859 startingPage "211" @default.
- W4247996859 abstract "Free Access References Yaroslav Chabanyuk, Yaroslav ChabanyukSearch for more papers by this authorAnatolii Nikitin, Anatolii NikitinSearch for more papers by this authorUliana Khimka, Uliana KhimkaSearch for more papers by this author Book Author(s):Yaroslav Chabanyuk, Yaroslav ChabanyukSearch for more papers by this authorAnatolii Nikitin, Anatolii NikitinSearch for more papers by this authorUliana Khimka, Uliana KhimkaSearch for more papers by this author First published: 28 October 2020 https://doi.org/10.1002/9781119779759.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Albeverio, S., Koshmanenko, V.D., and Samoilenko, I.V. (2008). The conflict interaction between two complex systems: Cyclic migration. Journal of Interdisciplinary Mathematics, 11(2), 163– 185. Albeverio, S., Koroliuk, V.S., and Samoilenko, I.V. (2009). Asymptotic expansion of semi-Markov random evolutions. Stochastics: An International Journal of Probability and Stochastic Processes, 81(5), 477– 502. Anisimov, V.V. (2008). Switching Processes in Queuing Models. ISTE Ltd, London, and Wiley, New York. Bainov, D. and Simeonov, P. (1992). Integral Inequalities and Applications. Kluwer Academic Publishers, Dordrecht. Bellman, R. (1957). Dynamic Programming (Dover Books on Computer Science). Princeton University Press, Princeton. Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cambridge. Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. Bryc, W. (1990). Large deviations by the asymptotic value method. In Diffusion Processes and Related Problems in Analysis, Vol. I, M.A. Pinsky (ed.), 447– 472, Birkhäuser, Boston. Chabanyuk, Y., Koroliuk, V.S., and Limnios, N. (2007). Fluctuation of stochastic systems with average equilibrium point. Comptes Rendus de l'Académie des Sciences, Paris, Series I, 345, 405– 410. Chabanyuk, Y.M. (2004a). Asymptotic normality for a continuous procedure of stochastic approximation in a Markov medium. Dopov. Nats. Akad. Nauk Ukr., A(5), 37– 45. Chabanyuk, Y.M. (2004b). Continuous procedure of stochastic approximation in a semi-Markov medium. Ukrains'kyi Matematychnyi Zhurnal, 56, 713– 720. Chabanyuk, Y.M. (2006). Asymptotic normality of a discrete procedure of stochastic approximation in a semi-Markov medium. Ukrainian Mathematical Journal, 58, 1616– 1625. Chabanyuk, Y.M. (2007). Stability of a dynamical system with semi-Markov switchings under conditions of diffusion approximation. Ukrainian Mathematical Journal, 59, 1441– 1452. Chabanyuk, Y.M., Nikitin, A.V., and Khimka, U.T. (2019). Asymptotic properties of the impulse perturbation process under Levy approximation conditions with the point of equilibrium of the quality criterion. Matematychni Studii, 52, 96– 104. Chernoff, H. (1952). Measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Annals of Mathematical Statististics, 23(4), 493– 655. Cinlar, E., Jacod, J., Protter, P., and Sharpe, M.J. (1980). Semimartingale and Markov processes. Zeitschrift für ahrscheinlichkeitstheorie und Verwandte Gebiete, 54, 161– 219. Cole, J.D. (1951). On a quasi-linear parabolic equation occurring in aerodynamics. The Quarterly of Applied Mathematics, 9, 225– 236. Cramer, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Scientifiques et Industrielles, 736, 5– 23. Crandall, M.G. and Lions, P.L. (1983). Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 277, 1– 42. Davis, M.H.A. (1993). Markov Models and Optimization. Chapman & Hall/CRC Press, Boca Raton. Dellacherie, C. and Meyer, P.-A. (1993). Probabilities and Potential. North-Holland Publishing, Amsterdam-New York. Dembo, A. and Zeitouni, O. (1993). Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston. Deuschel, J.-D. and Stroock, D.W. (1989). Large Deviations. Academic Press, Boston. Devooght, J. (1997). Dynamic reliability. Advances in Nuclear Science and Technology, 25, 215– 278. Doléans-Dade, C. and Meyer P.-A. (1970). Intégrales stochastiques par rapport aux martingales locales. Séminaire de Probabilités IV Université de Strasbourg. Lecture Notes in Mathematics, 124, 77– 107. Donsker, M.D. and Varadhan, S.R.S. (1975a). Asymptotic evaluation of certain Markov Process expectations for large time. I, Communications on Pure and Applied Mathematics, 27, 1– 47. Donsker, M.D. and Varadhan, S.R.S. (1975b). Asymptotic evaluation of certain Markov Process expectations for large time. II, Communications on Pure and Applied Mathematics, 28, 279– 301. Donsker, M.D. and Varadhan, S.R.S. (1975c). Asymptotic evaluation of certain Markov Process expectations for large time. III, Communications on Pure and Applied Mathematics, 29, 389– 461. Doob, J.L. (1990). Stochastic Processes. Reprint of the 1953 Original. John Wiley & Sons, New York. Dupuis, P. and Ellis, R.S. (1997). A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York. Ethier, S.N. and Kurtz, T.G. (1985). Markov Processes: Characterization and Convergence. Wiley, New York. Feng, J. (1999). Martingale problems for large deviations of Markov Processes, Stochastic Processes and Applications, 81(2), 165– 216. Feng, J. and Kurtz, T.G. (2006). Markov Processes: Characterization and Convergence. American Mathematical Society, Providence. Fleming, W.H and Soner, H.M. (2006). Controlled Markov Processes and Viscosity Solutions. Springer, New York. Fleming, W.H and Souganidis, P.E (1986). A PDE approach to some large deviations problems. Lectures in Applied Mathematics, 23, 441– 447. American Mathematical Society, Providence. Freidlin, M.I. (1978). The averaging principle and theorems on large deviations. Russian Mathematical Surveys, 33, 117– 176. Fukushima, M. and Stroock, D.W (1986). Reversibility of solutions to martingale problems. Adv. Math. (Suppl. Stud.), 9, 107– 123. Gorostiza, L. (1972). A central limit theorem for a class of D-dimensional random motions with constant speed. Bulletin of the American Mathematical Society, 78, 575– 577. Gorostiza, L. (1973a). The central limit theorem for random motions of D-dimensional Euclidean space. Annals of Probability, 1, 603– 612. Gorostiza, L. (1973b). An invariance principle for a class of D-dimensional polygonal random functions. Transactions of the American Mathematical Society, 177, 413– 445. Griego R. and Hersh, R. (1969). Random evolutions, Markov chains, and systems of partial differential equations. Proceedings of the National Academy of Sciences, 62, 305– 308. Hersh, R. (1974). Random evolutions: Survey of results and problems. Rocky Mountain Journal of Mathematics, 4, 443– 477. Hersh, R. (2003). The birth of random evolutions. Mathematical Intelligencer, 25, 53– 60. Hersh, R. and Papanicolaou, G. (1972). Non-commuting random evolutions, and an operator-valued Feynman–Kac formula. Communications on Pure and Applied Mathematics, 30, 337– 367. Hersh, R. and Pinsky, M. (1972). Random evolutions are asymptotically Gaussian. Communications on Pure and Applied Mathematics, 25, 33– 34. Hillen, T. (2001). Transport equations and chemosensitive movement. Habilitation Thesis, University of Tubingen, Tubingen. Hopf, E. (1950). The partial differential equation u t + uu x = µu xx . Communications on Pure and Applied Mathematics, 3, 201– 230. Jacod, J. and Shiryaev, A.N. (2003). Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin. Khimka, U.T. and Chabanyuk, Y.M. (2013). A difference stochastic optimization procedure with impulse perturbation. Cybernetics and Systems Analysis, 49, 768– 773. Kolesnik, A.D. (2001). Weak convergence of a planar random evolution to the Wiener process. Journal of Theoretical Probability, 14(2), 485– 494. Kolesnik, A.D. (2003). Weak convergence of the distributions of Markovian random evolutions in two and three dimensions. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 3, 41– 52. Koroliuk, V.S. and Samoilenko, I.V (2014). Large deviations for random evolutions in the scheme of asymptotically small diffusion. Modern Stochastics and Applications, Optimization and its Applications, 90, 201– 217. Koroliuk, V.S., Limnios, N., and Samoilenko, I.V. (2010a). Levy approximation of impulsive recurrent process with Markov switching. Theory of Probability and Mathematical Statistics, 80, 15– 23. Koroliuk, V.S., Limnios, N., and Samoilenko, I.V. (2010b). Levy approximation of impulsive recurrent process with semi-Markov switching. Theory of Stochastic Processes, 16(32), 77– 85. Korolyuk, V.S. and Chabanyuk, Y.M. (2002), Stability of a dynamical system with semi-Markov switchings under conditions of stability of the averaged system. Ukrainian Mathematical Journal, 54, 239– 252. Korolyuk, V.S. and Korolyuk, V.V. (1999). Stochastic Models of Systems. Kluwer Academic Publishers, Dordrecht. Korolyuk, V. and Limnios, N. (2005). Stochastic Systems in Merging Phase Space. World Scientific, Singapore. Korolyuk, V.S. and Turbin, A.F. (1993). Mathematical Foundations of the State Lumping of Large Systems. Kluwer Academic Publishers, Dordrecht. Kurtz, T.G. (1973). A limit theorem for perturbed operator semigroups with applications to random evolutions. Journal of Functional Analysis, 12, 55– 67. Kurtz, T.G. (1987). Martingale problems for controlled processes. Lecture Notes in Control and Information Sciences, 91, 75– 90. Kushner, H.J. (1990). Weak Convergence Methods and Singular Perturbed Stochastic Control and Filtering Problems. Birkhäuser, Boston. Limnios N. and Oprişan, G. (2001). Semi-Markov Processes and Reliability. Birkhäuser, Boston. Mogulskii, A.A. (1993). Large deviation for processes with independent increments. Annals of Probability, 21, 202– 215. Nashed, M.Z. (1976). Generalized Inverses and Applications. Academic Press, New York. Nevelson, M.S. and Khasminsky, R.Z. (1972). Stochastic Approximation and Recurrence Evaluation. Nauka, Moscow. Nikitin, A.V. (2015). Asymptotic properties of a stochastic diffusion transfer process with an equilibrium point of a quality criterion. Cybernetics and System Analysis, 4(51), 650– 656. Nikitin, A.V. (2018). Asymptotic dissipativity of stochastic processes with impulsive perturbation in the Levy approximation scheme. Journal of Automation and Information Sciences, 4(50), 205– 211. Nikitin, A.V. and Khimka, U.T. (2017). Asymptotics of normalized control with Markov switchings. Ukrainian Mathematical Journal, 8(68), 1252– 1262. O'Brien, G.L. and Vervaat, W. (1995). Compactness in the theory of large deviations. Stochastic Processes and Applications, 57, 1– 10. Orsingher, E. (2002). Bessel functions of third order and the distribution of cyclic planar motions with three directions. Stochastics and Stochastics Reports, 74, 617– 631. Orsingher, E. and Sommella, A.M. (2004). A cyclic random motion in R 3 with four directions and finite velocity. Stochastics and Stochastics Reports, 76, 113– 133. Othmer, H.G. and Hillen, T. (2002). The diffusion limit of transport equations II: Chemotaxis equations. SIAM Journal on Applied Mathematics, 4(62), 1222– 1250. Papanicolaou, G. (1971a). Motion of a particle in a random field. Journal of Mathematical Physics, 12, 1494– 1496. Papanicolaou, G. (1971b). Wave propagation in a one-dimensional random medium. SIAM Journal on Applied Mathematics, 21, 13– 18. Papanicolaou, G. (1973). Stochastic equations and their applications. American Mathematical Monthly, 80, 526– 544. Papanicolaou, G. (1975). Asymptotic analysis of transport processes. Bulletin of the American Mathematical Society, 81, 330– 392. Papanicolaou, G. (1976). Probabilistic problems and methods in singular perturbations. Rocky Mountain Journal of Mathematics, 6, 653– 673. Papanicolaou, G. and Hersh, R. (1972). Some limit theorems for stochastic equations and applications. Indiana University Mathematics Journal, 21, 815– 840. Papanicolaou, G. and Kellek, J. (1971). Stochastic differential equations with applications to random harmonic oscillations and wave propagation in random media. SIAM Journal on Applied Mathematics, 21, 287– 205. Papanicolaou, G., Stroock D., and Varadhan, R.S.S. (1977). Martingale approach to some limit theorems. In Statistical Mechanics Dynamical Systems, D Ruelle (ed.). Duke University, Durham. Pinsky, M. (1968). Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain. Zeitschrift für ahrscheinlichkeitstheorie und Verwandte Gebiete, 2, 101– 111. Pinsky, M. (1991). Lectures on Random Evolutions. World Scientific, Singapore. Protter, P. (1990). Stochastic Integration and Differential Equations. A New Approach. Springer-Verlag, Berlin. Puhalskii, A. (1991). On functional principle of large deviations. In New Trends in Probability and Statistics. VSP, Utrecht, 198– 219. Roth, J.P. (1974). Opérateurs carré du champ et formule de lévy-khinchine sur les espaces localement compacts. Comptes Rendus de l'Académie des Sciences Paris, Series A, 278, 1103– 1106. Samoilenko, I.V. and Nikitin, A.V. (2018). Differential equations with small stochastic terms under the levy approximating conditions. Ukrainian Mathematical Journal, 69(9), 1445– 1454. Samoilenko, I.V. and Nikitin, A.V. (2019). Double merging of the phase space for stochastic differential equations with small additions in poisson approximation conditions. Cybernetics and System Analysis, 55(2), 265– 273. Samoilenko, I.V., Chabanyuk, Y.M., Nikitin, A.V., and Khimka, U.T. (2017). Differential equations with small stochastic additions under Poisson approximation conditions. Cybernetics and System Analysis, 53(3), 410– 416. Skorokhod, A.V. (1989). Asymptotic Methods in the Theory of Stochastic Differential Equations. American Mathematical Society, Providence. Skorokhod, A.V., Hoppensteadt, F.C., and Salehi, H. (2002). Random Perturbation Methods with Applications in Science and Engineering. Springer-Verlag, New York. Stroock, D.W. and Varadhan, R.S.S. (1979). Multidimensional Diffusion Processes. Springer-Verlag, Berlin. Sviridenko, M.N. (1998). Martingale characterization of limit distributions in the space of functions without discontinuities of second kind. Mathematical notes of the Academy of Sciences of the USSR, 43(5), 398– 402. Asymptotic Analyses for Complex Evolutionary Systems with Markov and Semi-Markov Switching Using Approximation Schemes ReferencesRelatedInformation" @default.
- W4247996859 created "2022-05-12" @default.
- W4247996859 date "2020-10-28" @default.
- W4247996859 modified "2023-10-17" @default.
- W4247996859 title "References" @default.
- W4247996859 cites W1179633440 @default.
- W4247996859 cites W120859385 @default.
- W4247996859 cites W138904887 @default.
- W4247996859 cites W1490150974 @default.
- W4247996859 cites W1964114385 @default.
- W4247996859 cites W1971765957 @default.
- W4247996859 cites W1972989640 @default.
- W4247996859 cites W1980658125 @default.
- W4247996859 cites W1983029772 @default.
- W4247996859 cites W1983149278 @default.
- W4247996859 cites W1987768651 @default.
- W4247996859 cites W2006712105 @default.
- W4247996859 cites W2008006278 @default.
- W4247996859 cites W2008588947 @default.
- W4247996859 cites W2009558577 @default.
- W4247996859 cites W2014527760 @default.
- W4247996859 cites W2025753315 @default.
- W4247996859 cites W2037912907 @default.
- W4247996859 cites W2040675421 @default.
- W4247996859 cites W2042587503 @default.
- W4247996859 cites W2045384647 @default.
- W4247996859 cites W2053145378 @default.
- W4247996859 cites W2061514871 @default.
- W4247996859 cites W2064142044 @default.
- W4247996859 cites W2072919545 @default.
- W4247996859 cites W2087326568 @default.
- W4247996859 cites W2098703547 @default.
- W4247996859 cites W2119308846 @default.
- W4247996859 cites W2124022334 @default.
- W4247996859 cites W2136144249 @default.
- W4247996859 cites W2147804999 @default.
- W4247996859 cites W2148756877 @default.
- W4247996859 cites W2322630481 @default.
- W4247996859 cites W2502318419 @default.
- W4247996859 cites W2565432921 @default.
- W4247996859 cites W2583136942 @default.
- W4247996859 cites W2618089695 @default.
- W4247996859 cites W2749408143 @default.
- W4247996859 cites W2792514865 @default.
- W4247996859 cites W2924000822 @default.
- W4247996859 cites W2962697391 @default.
- W4247996859 cites W2964005485 @default.
- W4247996859 cites W2984144939 @default.
- W4247996859 cites W36346038 @default.
- W4247996859 cites W4205302168 @default.
- W4247996859 cites W4239002860 @default.
- W4247996859 cites W4244868396 @default.
- W4247996859 cites W4247619688 @default.
- W4247996859 cites W4249826445 @default.
- W4247996859 cites W4250460565 @default.
- W4247996859 cites W4293092461 @default.
- W4247996859 cites W4300140424 @default.
- W4247996859 cites W4302310164 @default.
- W4247996859 cites W436503306 @default.
- W4247996859 cites W576072746 @default.
- W4247996859 cites W590529998 @default.
- W4247996859 cites W636196736 @default.
- W4247996859 cites W640522012 @default.
- W4247996859 cites W7376423 @default.
- W4247996859 cites W83743425 @default.
- W4247996859 doi "https://doi.org/10.1002/9781119779759.refs" @default.
- W4247996859 hasPublicationYear "2020" @default.
- W4247996859 type Work @default.
- W4247996859 citedByCount "0" @default.
- W4247996859 crossrefType "other" @default.
- W4247996859 hasBestOaLocation W42479968591 @default.
- W4247996859 hasConcept C41008148 @default.
- W4247996859 hasConceptScore W4247996859C41008148 @default.
- W4247996859 hasLocation W42479968591 @default.
- W4247996859 hasOpenAccess W4247996859 @default.
- W4247996859 hasPrimaryLocation W42479968591 @default.
- W4247996859 hasRelatedWork W1596801655 @default.
- W4247996859 hasRelatedWork W2130043461 @default.
- W4247996859 hasRelatedWork W2350741829 @default.
- W4247996859 hasRelatedWork W2358668433 @default.
- W4247996859 hasRelatedWork W2376932109 @default.
- W4247996859 hasRelatedWork W2382290278 @default.
- W4247996859 hasRelatedWork W2390279801 @default.
- W4247996859 hasRelatedWork W2748952813 @default.
- W4247996859 hasRelatedWork W2899084033 @default.
- W4247996859 hasRelatedWork W2530322880 @default.
- W4247996859 isParatext "false" @default.
- W4247996859 isRetracted "false" @default.
- W4247996859 workType "other" @default.