Matches in SemOpenAlex for { <https://semopenalex.org/work/W4247998423> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4247998423 abstract "Research on individual variation has received increased attention. The bulk of the models discussed in psychological research so far, focus mainly on the temporal development of the mean structure. We expand the view on the within-person residual variability and present a new model parameterization derived from classic multivariate GARCH models used to predict and forecast volatility in financial time-series. We propose a new pdBEKK and a modified DCC model that accommodate external time-varying predictors for the within-person variance. This main goal of this work is to evaluate the potential usefulness of MGARCH models for research in within-person variability. MGARCH models partition the within-person variance into, at least, three components: An overall constant and unconditional baseline variance, a process that introduces variance conditional on previous innovations, or random shocks, and a process that governs the carry-over effects of previous conditional variance, similar to an AR model. Moreover, these models allow for variance spill-over effects from one time-series to another. We illustrate the pdBEKK- and the DCC-MGARCH on two individuals who have rated their daily positive and negative affect over 100 consecutive days. The full models comprised a multivariate ARMA(1,1) model for the means and included physical activity as moderator of the overall baseline variance. Overall, the pdBEKK seems to result in a more straight forward psychological interpretation, but the DCC is generally easier to estimate and can accommodate more simultaneous time-series. Both models require rather large amounts of datapoints to detect non-zero parameters. Potentials and limitations are discussed. We provide an R-package 'bmgarch' that facilitates the estimation of these types of models." @default.
- W4247998423 created "2022-05-12" @default.
- W4247998423 creator A5001975265 @default.
- W4247998423 creator A5043170875 @default.
- W4247998423 creator A5085154497 @default.
- W4247998423 creator A5089330380 @default.
- W4247998423 date "2020-03-14" @default.
- W4247998423 modified "2023-09-24" @default.
- W4247998423 title "A New Frontier for Studying Within-Person Variability: Bayesian Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models" @default.
- W4247998423 doi "https://doi.org/10.31234/osf.io/j57pk" @default.
- W4247998423 hasPublicationYear "2020" @default.
- W4247998423 type Work @default.
- W4247998423 citedByCount "0" @default.
- W4247998423 crossrefType "posted-content" @default.
- W4247998423 hasAuthorship W4247998423A5001975265 @default.
- W4247998423 hasAuthorship W4247998423A5043170875 @default.
- W4247998423 hasAuthorship W4247998423A5085154497 @default.
- W4247998423 hasAuthorship W4247998423A5089330380 @default.
- W4247998423 hasBestOaLocation W42479984232 @default.
- W4247998423 hasConcept C101104100 @default.
- W4247998423 hasConcept C105795698 @default.
- W4247998423 hasConcept C121955636 @default.
- W4247998423 hasConcept C149782125 @default.
- W4247998423 hasConcept C159877910 @default.
- W4247998423 hasConcept C161584116 @default.
- W4247998423 hasConcept C162324750 @default.
- W4247998423 hasConcept C196083921 @default.
- W4247998423 hasConcept C21430997 @default.
- W4247998423 hasConcept C23922673 @default.
- W4247998423 hasConcept C33923547 @default.
- W4247998423 hasConcept C41008148 @default.
- W4247998423 hasConcept C91602232 @default.
- W4247998423 hasConceptScore W4247998423C101104100 @default.
- W4247998423 hasConceptScore W4247998423C105795698 @default.
- W4247998423 hasConceptScore W4247998423C121955636 @default.
- W4247998423 hasConceptScore W4247998423C149782125 @default.
- W4247998423 hasConceptScore W4247998423C159877910 @default.
- W4247998423 hasConceptScore W4247998423C161584116 @default.
- W4247998423 hasConceptScore W4247998423C162324750 @default.
- W4247998423 hasConceptScore W4247998423C196083921 @default.
- W4247998423 hasConceptScore W4247998423C21430997 @default.
- W4247998423 hasConceptScore W4247998423C23922673 @default.
- W4247998423 hasConceptScore W4247998423C33923547 @default.
- W4247998423 hasConceptScore W4247998423C41008148 @default.
- W4247998423 hasConceptScore W4247998423C91602232 @default.
- W4247998423 hasLocation W42479984231 @default.
- W4247998423 hasLocation W42479984232 @default.
- W4247998423 hasLocation W42479984233 @default.
- W4247998423 hasOpenAccess W4247998423 @default.
- W4247998423 hasPrimaryLocation W42479984231 @default.
- W4247998423 hasRelatedWork W10228111 @default.
- W4247998423 hasRelatedWork W10403459 @default.
- W4247998423 hasRelatedWork W105168 @default.
- W4247998423 hasRelatedWork W1493099 @default.
- W4247998423 hasRelatedWork W5287302 @default.
- W4247998423 hasRelatedWork W5796491 @default.
- W4247998423 hasRelatedWork W7782605 @default.
- W4247998423 hasRelatedWork W9067356 @default.
- W4247998423 hasRelatedWork W9248485 @default.
- W4247998423 hasRelatedWork W9927194 @default.
- W4247998423 isParatext "false" @default.
- W4247998423 isRetracted "false" @default.
- W4247998423 workType "article" @default.