Matches in SemOpenAlex for { <https://semopenalex.org/work/W4248207967> ?p ?o ?g. }
- W4248207967 abstract "<sec> <title>BACKGROUND</title> Early detection of melanoma can be lifesaving but this remains a challenge. Recent diagnostic studies have revealed the superiority of artificial intelligence (AI) in classifying dermoscopic images of melanoma and nevi, concluding that these algorithms should assist a dermatologist’s diagnoses. </sec> <sec> <title>OBJECTIVE</title> The aim of this study was to investigate whether AI support improves the accuracy and overall diagnostic performance of dermatologists in the dichotomous image–based discrimination between melanoma and nevus. </sec> <sec> <title>METHODS</title> Twelve board-certified dermatologists were presented disjoint sets of 100 unique dermoscopic images of melanomas and nevi (total of 1200 unique images), and they had to classify the images based on personal experience alone (part I) and with the support of a trained convolutional neural network (CNN, part II). Additionally, dermatologists were asked to rate their confidence in their final decision for each image. </sec> <sec> <title>RESULTS</title> While the mean specificity of the dermatologists based on personal experience alone remained almost unchanged (70.6% vs 72.4%; <i>P</i>=.54) with AI support, the mean sensitivity and mean accuracy increased significantly (59.4% vs 74.6%; <i>P</i>=.003 and 65.0% vs 73.6%; <i>P</i>=.002, respectively) with AI support. Out of the 10% (10/94; 95% CI 8.4%-11.8%) of cases where dermatologists were correct and AI was incorrect, dermatologists on average changed to the incorrect answer for 39% (4/10; 95% CI 23.2%-55.6%) of cases. When dermatologists were incorrect and AI was correct (25/94, 27%; 95% CI 24.0%-30.1%), dermatologists changed their answers to the correct answer for 46% (11/25; 95% CI 33.1%-58.4%) of cases. Additionally, the dermatologists’ average confidence in their decisions increased when the CNN confirmed their decision and decreased when the CNN disagreed, even when the dermatologists were correct. Reported values are based on the mean of all participants. Whenever absolute values are shown, the denominator and numerator are approximations as every dermatologist ended up rating a varying number of images due to a quality control step. </sec> <sec> <title>CONCLUSIONS</title> The findings of our study show that AI support can improve the overall accuracy of the dermatologists in the dichotomous image–based discrimination between melanoma and nevus. This supports the argument for AI-based tools to aid clinicians in skin lesion classification and provides a rationale for studies of such classifiers in real-life settings, wherein clinicians can integrate additional information such as patient age and medical history into their decisions. </sec>" @default.
- W4248207967 created "2022-05-12" @default.
- W4248207967 creator A5002355200 @default.
- W4248207967 creator A5006404204 @default.
- W4248207967 creator A5007887862 @default.
- W4248207967 creator A5008750058 @default.
- W4248207967 creator A5016355689 @default.
- W4248207967 creator A5021633691 @default.
- W4248207967 creator A5022293880 @default.
- W4248207967 creator A5025256131 @default.
- W4248207967 creator A5034303822 @default.
- W4248207967 creator A5044736874 @default.
- W4248207967 creator A5054299697 @default.
- W4248207967 creator A5057226132 @default.
- W4248207967 creator A5058670875 @default.
- W4248207967 creator A5059931259 @default.
- W4248207967 creator A5067997906 @default.
- W4248207967 creator A5072203765 @default.
- W4248207967 creator A5078426768 @default.
- W4248207967 creator A5084073390 @default.
- W4248207967 creator A5086466437 @default.
- W4248207967 creator A5091513635 @default.
- W4248207967 date "2020-02-04" @default.
- W4248207967 modified "2023-09-25" @default.
- W4248207967 title "Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study (Preprint)" @default.
- W4248207967 cites W1528218178 @default.
- W4248207967 cites W1967349671 @default.
- W4248207967 cites W2039894354 @default.
- W4248207967 cites W2044055744 @default.
- W4248207967 cites W2113790176 @default.
- W4248207967 cites W2170994840 @default.
- W4248207967 cites W2174689039 @default.
- W4248207967 cites W2581082771 @default.
- W4248207967 cites W2757946740 @default.
- W4248207967 cites W2786147899 @default.
- W4248207967 cites W2792844945 @default.
- W4248207967 cites W2809624848 @default.
- W4248207967 cites W2897795482 @default.
- W4248207967 cites W2913881289 @default.
- W4248207967 cites W2959684014 @default.
- W4248207967 cites W2967473922 @default.
- W4248207967 cites W2972588473 @default.
- W4248207967 doi "https://doi.org/10.2196/preprints.18091" @default.
- W4248207967 hasPublicationYear "2020" @default.
- W4248207967 type Work @default.
- W4248207967 citedByCount "0" @default.
- W4248207967 crossrefType "posted-content" @default.
- W4248207967 hasAuthorship W4248207967A5002355200 @default.
- W4248207967 hasAuthorship W4248207967A5006404204 @default.
- W4248207967 hasAuthorship W4248207967A5007887862 @default.
- W4248207967 hasAuthorship W4248207967A5008750058 @default.
- W4248207967 hasAuthorship W4248207967A5016355689 @default.
- W4248207967 hasAuthorship W4248207967A5021633691 @default.
- W4248207967 hasAuthorship W4248207967A5022293880 @default.
- W4248207967 hasAuthorship W4248207967A5025256131 @default.
- W4248207967 hasAuthorship W4248207967A5034303822 @default.
- W4248207967 hasAuthorship W4248207967A5044736874 @default.
- W4248207967 hasAuthorship W4248207967A5054299697 @default.
- W4248207967 hasAuthorship W4248207967A5057226132 @default.
- W4248207967 hasAuthorship W4248207967A5058670875 @default.
- W4248207967 hasAuthorship W4248207967A5059931259 @default.
- W4248207967 hasAuthorship W4248207967A5067997906 @default.
- W4248207967 hasAuthorship W4248207967A5072203765 @default.
- W4248207967 hasAuthorship W4248207967A5078426768 @default.
- W4248207967 hasAuthorship W4248207967A5084073390 @default.
- W4248207967 hasAuthorship W4248207967A5086466437 @default.
- W4248207967 hasAuthorship W4248207967A5091513635 @default.
- W4248207967 hasBestOaLocation W42482079672 @default.
- W4248207967 hasConcept C126322002 @default.
- W4248207967 hasConcept C136764020 @default.
- W4248207967 hasConcept C142724271 @default.
- W4248207967 hasConcept C154945302 @default.
- W4248207967 hasConcept C16005928 @default.
- W4248207967 hasConcept C2777658100 @default.
- W4248207967 hasConcept C3020132585 @default.
- W4248207967 hasConcept C41008148 @default.
- W4248207967 hasConcept C43169469 @default.
- W4248207967 hasConcept C502942594 @default.
- W4248207967 hasConcept C534262118 @default.
- W4248207967 hasConcept C71924100 @default.
- W4248207967 hasConcept C81363708 @default.
- W4248207967 hasConceptScore W4248207967C126322002 @default.
- W4248207967 hasConceptScore W4248207967C136764020 @default.
- W4248207967 hasConceptScore W4248207967C142724271 @default.
- W4248207967 hasConceptScore W4248207967C154945302 @default.
- W4248207967 hasConceptScore W4248207967C16005928 @default.
- W4248207967 hasConceptScore W4248207967C2777658100 @default.
- W4248207967 hasConceptScore W4248207967C3020132585 @default.
- W4248207967 hasConceptScore W4248207967C41008148 @default.
- W4248207967 hasConceptScore W4248207967C43169469 @default.
- W4248207967 hasConceptScore W4248207967C502942594 @default.
- W4248207967 hasConceptScore W4248207967C534262118 @default.
- W4248207967 hasConceptScore W4248207967C71924100 @default.
- W4248207967 hasConceptScore W4248207967C81363708 @default.
- W4248207967 hasLocation W42482079671 @default.
- W4248207967 hasLocation W42482079672 @default.
- W4248207967 hasOpenAccess W4248207967 @default.
- W4248207967 hasPrimaryLocation W42482079671 @default.
- W4248207967 hasRelatedWork W14075107 @default.
- W4248207967 hasRelatedWork W14542071 @default.