Matches in SemOpenAlex for { <https://semopenalex.org/work/W4248212087> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4248212087 abstract "Abstract [Background] Drug label, or packaging insert play a significant role in all the operations from production through drug distribution channels to the end consumer. Image of the label also called Display Panel or label could be used to identify illegal, illicit, unapproved and potentially dangerous drugs. Due to the time-consuming process and high labor cost of investigation, an artificial intelligence-based deep learning model is necessary for fast and accurate identification of the drugs. [Methods] In addition to image-based identification technology, we take advantages of rich text information on the pharmaceutical package insert of drug label images. In this study, we developed the Drug Label Identification through Image and Text embedding model (DLI-IT) to model text-based patterns of historical data for detection of suspicious drugs. In DLI-IT, we first trained a Connectionist Text Proposal Network (CTPN) to crop the raw image into sub-images based on the text. The texts from the cropped sub-images are recognized independently through the Tesseract OCR Engine and combined as one document for each raw image. Finally, we applied universal sentence embedding to transform these documents into vectors and find the most similar reference images to the test image through the cosine similarity. Results] We trained the DLI-IT model on 1749 opioid and 2365 non-opioid drug label images. The model was then tested on 300 external opioid drug label images, the result demonstrated our model achieves up-to 88% of the precision in drug label identification, which outperforms previous image-based or text-based identification method by up-to 35% improvement. [Conclusion] To conclude, by combining Image and Text embedding analysis under deep learning framework, our DLI-IT approach achieved a competitive performance in advancing drug label identification." @default.
- W4248212087 created "2022-05-12" @default.
- W4248212087 creator A5009034274 @default.
- W4248212087 creator A5024782080 @default.
- W4248212087 creator A5039124210 @default.
- W4248212087 creator A5054981857 @default.
- W4248212087 creator A5068886380 @default.
- W4248212087 creator A5086347026 @default.
- W4248212087 date "2020-01-10" @default.
- W4248212087 modified "2023-10-16" @default.
- W4248212087 title "DLI-IT: A Deep Learning Approach to Drug Label Identification Through Image and Text Embedding" @default.
- W4248212087 doi "https://doi.org/10.21203/rs.2.20538/v1" @default.
- W4248212087 hasPublicationYear "2020" @default.
- W4248212087 type Work @default.
- W4248212087 citedByCount "0" @default.
- W4248212087 crossrefType "posted-content" @default.
- W4248212087 hasAuthorship W4248212087A5009034274 @default.
- W4248212087 hasAuthorship W4248212087A5024782080 @default.
- W4248212087 hasAuthorship W4248212087A5039124210 @default.
- W4248212087 hasAuthorship W4248212087A5054981857 @default.
- W4248212087 hasAuthorship W4248212087A5068886380 @default.
- W4248212087 hasAuthorship W4248212087A5086347026 @default.
- W4248212087 hasBestOaLocation W42482120871 @default.
- W4248212087 hasConcept C103278499 @default.
- W4248212087 hasConcept C108583219 @default.
- W4248212087 hasConcept C115961682 @default.
- W4248212087 hasConcept C116834253 @default.
- W4248212087 hasConcept C119857082 @default.
- W4248212087 hasConcept C153180895 @default.
- W4248212087 hasConcept C154945302 @default.
- W4248212087 hasConcept C2780762811 @default.
- W4248212087 hasConcept C41008148 @default.
- W4248212087 hasConcept C41608201 @default.
- W4248212087 hasConcept C59822182 @default.
- W4248212087 hasConcept C86803240 @default.
- W4248212087 hasConceptScore W4248212087C103278499 @default.
- W4248212087 hasConceptScore W4248212087C108583219 @default.
- W4248212087 hasConceptScore W4248212087C115961682 @default.
- W4248212087 hasConceptScore W4248212087C116834253 @default.
- W4248212087 hasConceptScore W4248212087C119857082 @default.
- W4248212087 hasConceptScore W4248212087C153180895 @default.
- W4248212087 hasConceptScore W4248212087C154945302 @default.
- W4248212087 hasConceptScore W4248212087C2780762811 @default.
- W4248212087 hasConceptScore W4248212087C41008148 @default.
- W4248212087 hasConceptScore W4248212087C41608201 @default.
- W4248212087 hasConceptScore W4248212087C59822182 @default.
- W4248212087 hasConceptScore W4248212087C86803240 @default.
- W4248212087 hasLocation W42482120871 @default.
- W4248212087 hasLocation W42482120872 @default.
- W4248212087 hasLocation W42482120873 @default.
- W4248212087 hasOpenAccess W4248212087 @default.
- W4248212087 hasPrimaryLocation W42482120871 @default.
- W4248212087 hasRelatedWork W2888325535 @default.
- W4248212087 hasRelatedWork W2900794075 @default.
- W4248212087 hasRelatedWork W2940384909 @default.
- W4248212087 hasRelatedWork W3183633970 @default.
- W4248212087 hasRelatedWork W4223943233 @default.
- W4248212087 hasRelatedWork W4225161397 @default.
- W4248212087 hasRelatedWork W4309045103 @default.
- W4248212087 hasRelatedWork W4312200629 @default.
- W4248212087 hasRelatedWork W4360585206 @default.
- W4248212087 hasRelatedWork W4364306694 @default.
- W4248212087 isParatext "false" @default.
- W4248212087 isRetracted "false" @default.
- W4248212087 workType "article" @default.