Matches in SemOpenAlex for { <https://semopenalex.org/work/W4248307390> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4248307390 endingPage "669" @default.
- W4248307390 startingPage "665" @default.
- W4248307390 abstract "Free Access APPENDIX D MMIC-BASED SYNTHESIZERS Dr Ulrich Rohde, Search for more papers by this authorProf. Enrico Rubiola, Search for more papers by this authorJerry Whitaker, Search for more papers by this author Book Author(s):Dr Ulrich Rohde, Search for more papers by this authorProf. Enrico Rubiola, Search for more papers by this authorJerry Whitaker, Search for more papers by this author First published: 09 April 2021 https://doi.org/10.1002/9781119666127.app4 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat BIBLIOGRAPHY Derksen, R.H. et al. (1985). Monolithic integration of a 5.3 GHz regenerative frequency divider using a standard bipolar technology. Electron Letters 21: 1037– 1039. CrossrefWeb of Science®Google Scholar Derksen, R.H. et al. (1988). 7.3 GHz dynamic frequency dividers monolithically integrated in a standard bipolar technology. IEEE Transactions on Microwave Theory and Techniques 36 (3): 537– 541. CrossrefWeb of Science®Google Scholar Fensen, J.F. et al. (1987). 26 GHz GaAs room-temperature dynamic divider circuit. In: IEEE GaAsIC Symposium Digest, 201– 204. New York, NY: IEEE. Google Scholar Honjo, K. et al. (1986). Novel design approach for X-band GaAs monolithic analog 1/4 frequency divider. IEEE Transactions on Microwave Theory and Techniques 34 (4): 436– 441. CrossrefWeb of Science®Google Scholar Ichino, H. et al. (1988). Super self-aligned process technology (SST) and its applications. In: IEEE Bipolar Circuits and Techniques Meeting Digest, 15– 18. New York, NY: IEEE. CrossrefGoogle Scholar Kanazawa, K. et al. (1988). A 15 GHz single-stage GaAs dual-gate FET monolithic analog frequency divider with reduced input threshold power. IEEE Transactions on Microwave Theory and Techniques 36 (12): 1908– 1912. CrossrefWeb of Science®Google Scholar Mizutani, T. et al. (1987). A high-speed static frequency divider employing n† Ge Gate AIGaAs MISFET. In: IEEE Proceedings, IEDM, 603– 606. New York, NY: IEEE. Google Scholar Morizuka, K. et al. (1988). AIGaAs/GaAs HBTs fabricated by a self-alignment technology using polyimide for electrode separation. IEEE Electron Device Letters 9 (11): 598– 600. CrossrefCASWeb of Science®Google Scholar Ohira, T. et al. (1985). 14 GHz band GaAs monolithic analogue frequency divider. Electron Letters 21: 1057– 1058. CrossrefWeb of Science®Google Scholar Ohira, T. et al. (1987). Development of key monolithic circuits to Ka-band full MMIC receivers. In: IEEE 1987 Microwave and Millimeter-wave Monolithic Circuits Symposium, 69– 74. New York, NY: IEEE. CrossrefGoogle Scholar Ohira, T. et al. (1987). MMIC 14 GHz VCO and miller frequency divider for low-noise local oscillators. IEEE Transactions on Microwave Theory and Techniques 35 (7): 657– 662. CrossrefWeb of Science®Google Scholar Ohira, T. et al. (1989). A compact full MMIC module for Ku-band phase-locked oscillators. IEEE Transactions on Microwave Theory and Techniques 37 (4): 723– 728. CrossrefWeb of Science®Google Scholar Ohira, T. et al. (1989). A Ku-band MMIC PLL frequency synthesizer. In: 1989 IEEE MTT-S Digest, 1047– 1050. New York, NY: IEEE. CrossrefGoogle Scholar Osafune, K. et al. (1987). An ultra-high speed GaAs prescaler using a dynamic frequency divider. IEEE Transactions on Microwave Theory and Techniques 35 (1): 9– 13. CrossrefWeb of Science®Google Scholar Riddle, A.N., Avantek, Inc., and Trew, R.J. (1987). A new measurement system for oscillator noise characterization. In: 1987 IEEE MTT-S Digest, 509– 512. New York, NY: IEEE. CrossrefGoogle Scholar Saito, S. Low Power and Fast Switching Synthesizers for Mobile Roads. NTT Radio Communication Systems Labs. Google Scholar Shigaki, M. et al. (1988). High-speed GaAs dynamic frequency divider using a double-loop structure and differential amplifiers. IEEE Transactions on Microwave Theory and Techniques 36 (4): 772– 774. CrossrefWeb of Science®Google Scholar Stubbs, M.G. et al. (1986). A single stage monolithic regenerative 1/2 analog frequency divider. In: IEEE GaAs IC Symposium Digest, 199– 201. Google Scholar Suzuki, M. et al. (1985). A 9 GHz frequency divider using Si bipolar super self-aligned process technology. IEEE Electron Device Letters 6: 181– 183. CrossrefWeb of Science®Google Scholar Takahashi, M. et al. (1988). A 9.5 GHz commercially available 1/4 GaAs dynamic prescaler. IEEE Transactions on Microwave Theory and Techniques 36 (12): 1913– 1919. CrossrefWeb of Science®Google Scholar Wang, K.C. et al. (1987). A 20 GHz frequency divider implemented with heterojunction bipolar transistors. IEEE Electron Device Letters 8 (9): 383– 385. CrossrefCASWeb of Science®Google Scholar Weger, P. et al. (1987). Static 7 GHz frequency divider IC based on a 2 μm Si bipolar technology. Electronic Letters 23: 192– 193. CrossrefWeb of Science®Google Scholar Weger, P. et al. (1989). A Si bipolar 15 GHz static frequency divider and 100 gB/s multiplexer. In: IEEE International Solid-State Circuits Conference Digest, 222– 223. New York, NY: IEEE. CrossrefGoogle Scholar Yamasaki, T. and Nagata, E. (1989). Microwave Synthesizer for Terrestrial and Satellite Communications. NEC Corporation. Google Scholar Yamauchi, Y. et al. (1987). 22 GHz 1/4 frequency divider using AIGaAs/GaAs HBTs. Electronic Letters 23 (17): 881– 882. CrossrefWeb of Science®Google Scholar Yamauchi, Y. et al. (1988). AIGaAs HBT dynamic frequency divider constructed of a single D-type flip-flop. Electron Letters 24 (17): 1109– 1110. CrossrefWeb of Science®Google Scholar Microwave and Wireless Synthesizers: Theory and Design, Second Edition ReferencesRelatedInformation" @default.
- W4248307390 created "2022-05-12" @default.
- W4248307390 date "2021-04-09" @default.
- W4248307390 modified "2023-09-27" @default.
- W4248307390 title "APPENDIX D <scp>MMIC</scp> ‐BASED SYNTHESIZERS" @default.
- W4248307390 cites W1590692846 @default.
- W4248307390 cites W2013634325 @default.
- W4248307390 cites W2051402934 @default.
- W4248307390 cites W2054588814 @default.
- W4248307390 cites W2062275353 @default.
- W4248307390 cites W2067915350 @default.
- W4248307390 cites W2072931680 @default.
- W4248307390 cites W2079428378 @default.
- W4248307390 cites W2096061118 @default.
- W4248307390 cites W2096225568 @default.
- W4248307390 cites W2108294958 @default.
- W4248307390 cites W2110546685 @default.
- W4248307390 cites W2111166101 @default.
- W4248307390 cites W2121883888 @default.
- W4248307390 cites W2123152808 @default.
- W4248307390 cites W2140528582 @default.
- W4248307390 cites W2145752268 @default.
- W4248307390 cites W2168063006 @default.
- W4248307390 cites W2169222209 @default.
- W4248307390 cites W2169970270 @default.
- W4248307390 cites W3216890239 @default.
- W4248307390 doi "https://doi.org/10.1002/9781119666127.app4" @default.
- W4248307390 hasPublicationYear "2021" @default.
- W4248307390 type Work @default.
- W4248307390 citedByCount "0" @default.
- W4248307390 crossrefType "other" @default.
- W4248307390 hasBestOaLocation W42483073901 @default.
- W4248307390 hasConcept C119599485 @default.
- W4248307390 hasConcept C127413603 @default.
- W4248307390 hasConcept C128450285 @default.
- W4248307390 hasConcept C136764020 @default.
- W4248307390 hasConcept C161191863 @default.
- W4248307390 hasConcept C194257627 @default.
- W4248307390 hasConcept C2776257435 @default.
- W4248307390 hasConcept C2778805511 @default.
- W4248307390 hasConcept C41008148 @default.
- W4248307390 hasConcept C76155785 @default.
- W4248307390 hasConceptScore W4248307390C119599485 @default.
- W4248307390 hasConceptScore W4248307390C127413603 @default.
- W4248307390 hasConceptScore W4248307390C128450285 @default.
- W4248307390 hasConceptScore W4248307390C136764020 @default.
- W4248307390 hasConceptScore W4248307390C161191863 @default.
- W4248307390 hasConceptScore W4248307390C194257627 @default.
- W4248307390 hasConceptScore W4248307390C2776257435 @default.
- W4248307390 hasConceptScore W4248307390C2778805511 @default.
- W4248307390 hasConceptScore W4248307390C41008148 @default.
- W4248307390 hasConceptScore W4248307390C76155785 @default.
- W4248307390 hasLocation W42483073901 @default.
- W4248307390 hasOpenAccess W4248307390 @default.
- W4248307390 hasPrimaryLocation W42483073901 @default.
- W4248307390 hasRelatedWork W1480293927 @default.
- W4248307390 hasRelatedWork W1893672850 @default.
- W4248307390 hasRelatedWork W2136338684 @default.
- W4248307390 hasRelatedWork W2188830922 @default.
- W4248307390 hasRelatedWork W2323581027 @default.
- W4248307390 hasRelatedWork W2559452788 @default.
- W4248307390 hasRelatedWork W2748952813 @default.
- W4248307390 hasRelatedWork W2899084033 @default.
- W4248307390 hasRelatedWork W2151132912 @default.
- W4248307390 hasRelatedWork W2497344084 @default.
- W4248307390 isParatext "false" @default.
- W4248307390 isRetracted "false" @default.
- W4248307390 workType "other" @default.