Matches in SemOpenAlex for { <https://semopenalex.org/work/W4248580168> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4248580168 abstract "<sec> <title>BACKGROUND</title> More than 20% of patients admitted to the intensive care unit (ICU) develop an adverse event (AE). No previous study has leveraged patients’ data to extract the temporal features using their structural temporal patterns, that is, trends. </sec> <sec> <title>OBJECTIVE</title> This study aimed to improve AE prediction methods by using structural temporal pattern detection that captures global and local temporal trends and to demonstrate these improvements in the detection of acute kidney injury (AKI). </sec> <sec> <title>METHODS</title> Using the Medical Information Mart for Intensive Care dataset, containing 22,542 patients, we extracted both global and local trends using structural pattern detection methods to predict AKI (ie, binary prediction). Classifiers were built on 17 input features consisting of vital signs and laboratory test results using state-of-the-art models; the optimal classifier was selected for comparisons with previous approaches. The classifier with structural pattern detection features was compared with two baseline classifiers that used different temporal feature extraction approaches commonly used in the literature: (1) symbolic temporal pattern detection, which is the most common approach for multivariate time series classification; and (2) the last recorded value before the prediction point, which is the most common approach to extract temporal data in the AKI prediction literature. Moreover, we assessed the individual contribution of global and local trends. Classifier performance was measured in terms of accuracy (primary outcome), area under the curve, and F-measure. For all experiments, we employed 20-fold cross-validation. </sec> <sec> <title>RESULTS</title> Random forest was the best classifier using structural temporal pattern detection. The accuracy of the classifier with local and global trend features was significantly higher than that while using symbolic temporal pattern detection and the last recorded value (81.3% vs 70.6% vs 58.1%; <i>P</i><.001). Excluding local or global features reduced the accuracy to 74.4% or 78.1%, respectively (<i>P</i><.001). </sec> <sec> <title>CONCLUSIONS</title> Classifiers using features obtained from structural temporal pattern detection significantly improved the prediction of AKI onset in ICU patients over two baselines based on common previous approaches. The proposed method is a generalizable approach to predict AEs in critical care that may be used to help clinicians intervene in a timely manner to prevent or mitigate AEs. </sec>" @default.
- W4248580168 created "2022-05-12" @default.
- W4248580168 creator A5007190695 @default.
- W4248580168 creator A5025877685 @default.
- W4248580168 creator A5041626722 @default.
- W4248580168 creator A5057637784 @default.
- W4248580168 creator A5077260842 @default.
- W4248580168 creator A5091857530 @default.
- W4248580168 date "2019-04-04" @default.
- W4248580168 modified "2023-09-26" @default.
- W4248580168 title "Temporal Pattern Detection to Predict Adverse Events in Critical Care: Case Study With Acute Kidney Injury (Preprint)" @default.
- W4248580168 cites W1967300023 @default.
- W4248580168 cites W1984498786 @default.
- W4248580168 cites W1989037929 @default.
- W4248580168 cites W2015462679 @default.
- W4248580168 cites W2017666374 @default.
- W4248580168 cites W2070871888 @default.
- W4248580168 cites W2082285428 @default.
- W4248580168 cites W2088252378 @default.
- W4248580168 cites W2108796877 @default.
- W4248580168 cites W2135314898 @default.
- W4248580168 cites W2156406284 @default.
- W4248580168 cites W2161484642 @default.
- W4248580168 cites W2237748339 @default.
- W4248580168 cites W2396881363 @default.
- W4248580168 cites W2402706443 @default.
- W4248580168 cites W2594454279 @default.
- W4248580168 cites W2755758115 @default.
- W4248580168 doi "https://doi.org/10.2196/preprints.14272" @default.
- W4248580168 hasPublicationYear "2019" @default.
- W4248580168 type Work @default.
- W4248580168 citedByCount "0" @default.
- W4248580168 crossrefType "posted-content" @default.
- W4248580168 hasAuthorship W4248580168A5007190695 @default.
- W4248580168 hasAuthorship W4248580168A5025877685 @default.
- W4248580168 hasAuthorship W4248580168A5041626722 @default.
- W4248580168 hasAuthorship W4248580168A5057637784 @default.
- W4248580168 hasAuthorship W4248580168A5077260842 @default.
- W4248580168 hasAuthorship W4248580168A5091857530 @default.
- W4248580168 hasBestOaLocation W42485801682 @default.
- W4248580168 hasConcept C119857082 @default.
- W4248580168 hasConcept C124101348 @default.
- W4248580168 hasConcept C126322002 @default.
- W4248580168 hasConcept C153180895 @default.
- W4248580168 hasConcept C154945302 @default.
- W4248580168 hasConcept C161584116 @default.
- W4248580168 hasConcept C2780472472 @default.
- W4248580168 hasConcept C41008148 @default.
- W4248580168 hasConcept C71924100 @default.
- W4248580168 hasConcept C95623464 @default.
- W4248580168 hasConceptScore W4248580168C119857082 @default.
- W4248580168 hasConceptScore W4248580168C124101348 @default.
- W4248580168 hasConceptScore W4248580168C126322002 @default.
- W4248580168 hasConceptScore W4248580168C153180895 @default.
- W4248580168 hasConceptScore W4248580168C154945302 @default.
- W4248580168 hasConceptScore W4248580168C161584116 @default.
- W4248580168 hasConceptScore W4248580168C2780472472 @default.
- W4248580168 hasConceptScore W4248580168C41008148 @default.
- W4248580168 hasConceptScore W4248580168C71924100 @default.
- W4248580168 hasConceptScore W4248580168C95623464 @default.
- W4248580168 hasLocation W42485801681 @default.
- W4248580168 hasLocation W42485801682 @default.
- W4248580168 hasOpenAccess W4248580168 @default.
- W4248580168 hasPrimaryLocation W42485801681 @default.
- W4248580168 hasRelatedWork W12829028 @default.
- W4248580168 hasRelatedWork W14115579 @default.
- W4248580168 hasRelatedWork W15309441 @default.
- W4248580168 hasRelatedWork W17363277 @default.
- W4248580168 hasRelatedWork W18055459 @default.
- W4248580168 hasRelatedWork W2265207 @default.
- W4248580168 hasRelatedWork W36490 @default.
- W4248580168 hasRelatedWork W4680410 @default.
- W4248580168 hasRelatedWork W65220 @default.
- W4248580168 hasRelatedWork W3424037 @default.
- W4248580168 isParatext "false" @default.
- W4248580168 isRetracted "false" @default.
- W4248580168 workType "article" @default.