Matches in SemOpenAlex for { <https://semopenalex.org/work/W4248743600> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4248743600 abstract "This dissertation aims to develop an effective and practical method to forecast chaotic time series. Chaotic behaviour has been observed in the areas of marketing, stock markets, supply chain management, foreign exchange rates, weather forecasting and many others. An effective forecasting model can reduce the potential risks and uncertainty and facilitate planning and decision making in chaotic systems. In this study, residual analysis using a combination of the embedding theorem and ensemble artificial neural networks is adopted to forecast chaotic time series. Based on the embedding theorem, the embedding parameters are determined and the time series is reconstructed into proper phase space points. The embedded phase space points are fed into the first neural network and trained. The weights and biases are kept to predict the future values of phase space points and accordingly to obtain future values of chaotic time series. The residual of the predicted time series is further analyzed; and, if a chaotic behaviour is observed, then the residuals are processed as a new chaotic time series and predicted. This iterative residual analysis can be repeated several times depending on the desired accuracy level and computational efficiency. Finally, the last neural network is trained using neural networks' result values of the time series and the residuals as input and the original time series as output. The initial weights and biases of the neural networks are improved using genetic algorithms. Taguchi's design of experiments is adopted to identify appropriate factor-level combinations to improve the result of the proposed forecasting method. A systematic approach is proposed to improve the combination of ensemble artificial neural networks and their parameters. The proposed methodology is applied to a number of benchmark and some real life chaotic time series. In addition, the proposed forecasting method has been applied to financial sector time series, namely, the stock markets and foreign exchange rates. The experimental results confirm that the proposed method can predict the chaotic time series more effectively in terms of error indices when compared with other forecasting methods in the literature." @default.
- W4248743600 created "2022-05-12" @default.
- W4248743600 creator A5021762482 @default.
- W4248743600 date "2021-05-22" @default.
- W4248743600 modified "2023-09-24" @default.
- W4248743600 title "Chaotic time series forecasting with residual analysis using synergy of ensemble neural networks and Taguchi's design of experiments" @default.
- W4248743600 doi "https://doi.org/10.32920/ryerson.14649354" @default.
- W4248743600 hasPublicationYear "2021" @default.
- W4248743600 type Work @default.
- W4248743600 citedByCount "0" @default.
- W4248743600 crossrefType "posted-content" @default.
- W4248743600 hasAuthorship W4248743600A5021762482 @default.
- W4248743600 hasBestOaLocation W42487436001 @default.
- W4248743600 hasConcept C11413529 @default.
- W4248743600 hasConcept C119857082 @default.
- W4248743600 hasConcept C121332964 @default.
- W4248743600 hasConcept C126255220 @default.
- W4248743600 hasConcept C143724316 @default.
- W4248743600 hasConcept C151342819 @default.
- W4248743600 hasConcept C151406439 @default.
- W4248743600 hasConcept C151730666 @default.
- W4248743600 hasConcept C154945302 @default.
- W4248743600 hasConcept C155512373 @default.
- W4248743600 hasConcept C2777052490 @default.
- W4248743600 hasConcept C33923547 @default.
- W4248743600 hasConcept C41008148 @default.
- W4248743600 hasConcept C41608201 @default.
- W4248743600 hasConcept C50644808 @default.
- W4248743600 hasConcept C86803240 @default.
- W4248743600 hasConcept C97355855 @default.
- W4248743600 hasConceptScore W4248743600C11413529 @default.
- W4248743600 hasConceptScore W4248743600C119857082 @default.
- W4248743600 hasConceptScore W4248743600C121332964 @default.
- W4248743600 hasConceptScore W4248743600C126255220 @default.
- W4248743600 hasConceptScore W4248743600C143724316 @default.
- W4248743600 hasConceptScore W4248743600C151342819 @default.
- W4248743600 hasConceptScore W4248743600C151406439 @default.
- W4248743600 hasConceptScore W4248743600C151730666 @default.
- W4248743600 hasConceptScore W4248743600C154945302 @default.
- W4248743600 hasConceptScore W4248743600C155512373 @default.
- W4248743600 hasConceptScore W4248743600C2777052490 @default.
- W4248743600 hasConceptScore W4248743600C33923547 @default.
- W4248743600 hasConceptScore W4248743600C41008148 @default.
- W4248743600 hasConceptScore W4248743600C41608201 @default.
- W4248743600 hasConceptScore W4248743600C50644808 @default.
- W4248743600 hasConceptScore W4248743600C86803240 @default.
- W4248743600 hasConceptScore W4248743600C97355855 @default.
- W4248743600 hasLocation W42487436001 @default.
- W4248743600 hasLocation W42487436002 @default.
- W4248743600 hasOpenAccess W4248743600 @default.
- W4248743600 hasPrimaryLocation W42487436001 @default.
- W4248743600 hasRelatedWork W1506327936 @default.
- W4248743600 hasRelatedWork W2120684500 @default.
- W4248743600 hasRelatedWork W2139856176 @default.
- W4248743600 hasRelatedWork W2150809741 @default.
- W4248743600 hasRelatedWork W2169125069 @default.
- W4248743600 hasRelatedWork W2354237749 @default.
- W4248743600 hasRelatedWork W2367356307 @default.
- W4248743600 hasRelatedWork W2381291696 @default.
- W4248743600 hasRelatedWork W2384771669 @default.
- W4248743600 hasRelatedWork W2556361857 @default.
- W4248743600 isParatext "false" @default.
- W4248743600 isRetracted "false" @default.
- W4248743600 workType "article" @default.