Matches in SemOpenAlex for { <https://semopenalex.org/work/W4248889728> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4248889728 abstract "<sec> <title>BACKGROUND</title> Despite the availability of free routine immunizations in low- and middle-income countries, many children are not completely vaccinated, vaccinated late for age, or drop out from the course of the immunization schedule. Without the technology to model and visualize risk of large datasets, vaccinators and policy makers are unable to identify target groups and individuals at high risk of dropping out; thus default rates remain high, preventing universal immunization coverage. Predictive analytics algorithm leverages artificial intelligence and uses statistical modeling, machine learning, and multidimensional data mining to accurately identify children who are most likely to delay or miss their follow-up immunization visits. </sec> <sec> <title>OBJECTIVE</title> This study aimed to conduct feasibility testing and validation of a predictive analytics algorithm to identify the children who are likely to default on subsequent immunization visits for any vaccine included in the routine immunization schedule. </sec> <sec> <title>METHODS</title> The algorithm was developed using 47,554 longitudinal immunization records, which were classified into the training and validation cohorts. Four machine learning models (random forest; recursive partitioning; support vector machines, SVMs; and C-forest) were used to generate the algorithm that predicts the likelihood of each child defaulting from the follow-up immunization visit. The following variables were used in the models as predictors of defaulting: gender of the child, language spoken at the child’s house, place of residence of the child (town or city), enrollment vaccine, timeliness of vaccination, enrolling staff (vaccinator or others), date of birth (accurate or estimated), and age group of the child. The models were encapsulated in the predictive engine, which identified the most appropriate method to use in a given case. Each of the models was assessed in terms of accuracy, precision (positive predictive value), sensitivity, specificity and negative predictive value, and area under the curve (AUC). </sec> <sec> <title>RESULTS</title> Out of 11,889 cases in the validation dataset, the random forest model correctly predicted 8994 cases, yielding 94.9% sensitivity and 54.9% specificity. The C-forest model, SVMs, and recursive partitioning models improved prediction by achieving 352, 376, and 389 correctly predicted cases, respectively, above the predictions made by the random forest model. All models had a C-statistic of 0.750 or above, whereas the highest statistic (AUC 0.791, 95% CI 0.784-0.798) was observed in the recursive partitioning algorithm. </sec> <sec> <title>CONCLUSIONS</title> This feasibility study demonstrates that predictive analytics can accurately identify children who are at a higher risk for defaulting on follow-up immunization visits. Correct identification of potential defaulters opens a window for evidence-based targeted interventions in resource limited settings to achieve optimal immunization coverage and timeliness. </sec>" @default.
- W4248889728 created "2022-05-12" @default.
- W4248889728 creator A5003483022 @default.
- W4248889728 creator A5004382714 @default.
- W4248889728 creator A5025015584 @default.
- W4248889728 creator A5028336727 @default.
- W4248889728 creator A5031078765 @default.
- W4248889728 creator A5035818341 @default.
- W4248889728 creator A5038871643 @default.
- W4248889728 creator A5063567942 @default.
- W4248889728 date "2017-12-18" @default.
- W4248889728 modified "2023-10-18" @default.
- W4248889728 title "Using Predictive Analytics to Identify Children at High Risk of Defaulting From a Routine Immunization Program: Feasibility Study (Preprint)" @default.
- W4248889728 cites W2033609349 @default.
- W4248889728 cites W2123998733 @default.
- W4248889728 cites W2200122354 @default.
- W4248889728 cites W2202313121 @default.
- W4248889728 cites W2268812551 @default.
- W4248889728 cites W2569001723 @default.
- W4248889728 cites W2605253636 @default.
- W4248889728 cites W2737873903 @default.
- W4248889728 doi "https://doi.org/10.2196/preprints.9681" @default.
- W4248889728 hasPublicationYear "2017" @default.
- W4248889728 type Work @default.
- W4248889728 citedByCount "1" @default.
- W4248889728 countsByYear W42488897282022 @default.
- W4248889728 crossrefType "posted-content" @default.
- W4248889728 hasAuthorship W4248889728A5003483022 @default.
- W4248889728 hasAuthorship W4248889728A5004382714 @default.
- W4248889728 hasAuthorship W4248889728A5025015584 @default.
- W4248889728 hasAuthorship W4248889728A5028336727 @default.
- W4248889728 hasAuthorship W4248889728A5031078765 @default.
- W4248889728 hasAuthorship W4248889728A5035818341 @default.
- W4248889728 hasAuthorship W4248889728A5038871643 @default.
- W4248889728 hasAuthorship W4248889728A5063567942 @default.
- W4248889728 hasBestOaLocation W42488897282 @default.
- W4248889728 hasConcept C10138342 @default.
- W4248889728 hasConcept C111919701 @default.
- W4248889728 hasConcept C119857082 @default.
- W4248889728 hasConcept C12267149 @default.
- W4248889728 hasConcept C144024400 @default.
- W4248889728 hasConcept C144133560 @default.
- W4248889728 hasConcept C147483822 @default.
- W4248889728 hasConcept C149923435 @default.
- W4248889728 hasConcept C154945302 @default.
- W4248889728 hasConcept C169258074 @default.
- W4248889728 hasConcept C203014093 @default.
- W4248889728 hasConcept C2776269092 @default.
- W4248889728 hasConcept C2780801004 @default.
- W4248889728 hasConcept C41008148 @default.
- W4248889728 hasConcept C58471807 @default.
- W4248889728 hasConcept C68387754 @default.
- W4248889728 hasConcept C69637215 @default.
- W4248889728 hasConcept C71924100 @default.
- W4248889728 hasConcept C83209312 @default.
- W4248889728 hasConceptScore W4248889728C10138342 @default.
- W4248889728 hasConceptScore W4248889728C111919701 @default.
- W4248889728 hasConceptScore W4248889728C119857082 @default.
- W4248889728 hasConceptScore W4248889728C12267149 @default.
- W4248889728 hasConceptScore W4248889728C144024400 @default.
- W4248889728 hasConceptScore W4248889728C144133560 @default.
- W4248889728 hasConceptScore W4248889728C147483822 @default.
- W4248889728 hasConceptScore W4248889728C149923435 @default.
- W4248889728 hasConceptScore W4248889728C154945302 @default.
- W4248889728 hasConceptScore W4248889728C169258074 @default.
- W4248889728 hasConceptScore W4248889728C203014093 @default.
- W4248889728 hasConceptScore W4248889728C2776269092 @default.
- W4248889728 hasConceptScore W4248889728C2780801004 @default.
- W4248889728 hasConceptScore W4248889728C41008148 @default.
- W4248889728 hasConceptScore W4248889728C58471807 @default.
- W4248889728 hasConceptScore W4248889728C68387754 @default.
- W4248889728 hasConceptScore W4248889728C69637215 @default.
- W4248889728 hasConceptScore W4248889728C71924100 @default.
- W4248889728 hasConceptScore W4248889728C83209312 @default.
- W4248889728 hasLocation W42488897281 @default.
- W4248889728 hasLocation W42488897282 @default.
- W4248889728 hasOpenAccess W4248889728 @default.
- W4248889728 hasPrimaryLocation W42488897281 @default.
- W4248889728 hasRelatedWork W1472067 @default.
- W4248889728 hasRelatedWork W2185224 @default.
- W4248889728 hasRelatedWork W3865299 @default.
- W4248889728 hasRelatedWork W4179840 @default.
- W4248889728 hasRelatedWork W5683678 @default.
- W4248889728 hasRelatedWork W6229082 @default.
- W4248889728 hasRelatedWork W6310906 @default.
- W4248889728 hasRelatedWork W728297 @default.
- W4248889728 hasRelatedWork W7284278 @default.
- W4248889728 hasRelatedWork W8545729 @default.
- W4248889728 isParatext "false" @default.
- W4248889728 isRetracted "false" @default.
- W4248889728 workType "article" @default.