Matches in SemOpenAlex for { <https://semopenalex.org/work/W4249562567> ?p ?o ?g. }
- W4249562567 endingPage "181" @default.
- W4249562567 startingPage "161" @default.
- W4249562567 abstract "AbstractThree processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. The chemical inhibition method seeks to displace the natural gas hydrate equilibrium condition beyond the hydrate stability zone’s thermodynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. Of these three production methodologies, the depressurization combined with the thermal stimulation process appears to be the most practical for zones where free gas is trapped beneath the methane hydrates.There are two gas hydrate reservoir. They are arctic hydrates and marine hydrates. Gas hydrates are found within and under permafrost in arctic regions. They are also found within a few hundred meters of the seafloor on continental slopes and in deep seas and lakes.The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not produce to a fixed platform a drilling template must be used that connects to a group of wells. Transporting methane from the production site to the shore could be through submarine pipelines as is done for long distance transportation of natural gas. However, submarine pipelines are expensive and the geological hazards of the continental slope make this option difficult.The economic production of natural gas from oceanic hydrate deposits will require new offshore drilling systems and methods. Recovering methane and economically transporting it, pose a challenge to technologists and scientists. Ideas have been conceptualized and research mounted to address these challenges.Based on the calculations depressurization was shown to be the most promising technique for the class 1 type of reservoirs. Depressurization has also been quoted by many researchers as the most economically viable option. Methanol is approximately three times less expensive than ethylene glycol (EG), one must pay particular attention to the amount of methanol necessary to treat the inlet gas. With increasing gas flow rates, the EG injection process typically becomes a more viable option because the inhibitor is regenerated. The increased cost of utilizing methanol injection to treat larger gas volumes can be directly associated to the raw material make-up cost.KeywordsMethane ProductionThermal StimulationHydrate DissociationSubmarine PipelineHydrate DepositThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W4249562567 created "2022-05-12" @default.
- W4249562567 date "2010-01-01" @default.
- W4249562567 modified "2023-09-28" @default.
- W4249562567 title "Processes for Methane Production from Gas Hydrates" @default.
- W4249562567 cites W101972026 @default.
- W4249562567 cites W1590240569 @default.
- W4249562567 cites W1870276539 @default.
- W4249562567 cites W1966778530 @default.
- W4249562567 cites W1971501145 @default.
- W4249562567 cites W1972828983 @default.
- W4249562567 cites W1974607245 @default.
- W4249562567 cites W1983590074 @default.
- W4249562567 cites W1985149054 @default.
- W4249562567 cites W1988815736 @default.
- W4249562567 cites W1992591787 @default.
- W4249562567 cites W2001268647 @default.
- W4249562567 cites W2001709319 @default.
- W4249562567 cites W2005292337 @default.
- W4249562567 cites W2007919909 @default.
- W4249562567 cites W2009243996 @default.
- W4249562567 cites W2011288380 @default.
- W4249562567 cites W2014295681 @default.
- W4249562567 cites W2016443878 @default.
- W4249562567 cites W2019487134 @default.
- W4249562567 cites W2021421136 @default.
- W4249562567 cites W2021898536 @default.
- W4249562567 cites W2029597479 @default.
- W4249562567 cites W2032020886 @default.
- W4249562567 cites W2033932793 @default.
- W4249562567 cites W2040910765 @default.
- W4249562567 cites W2042874513 @default.
- W4249562567 cites W2045780987 @default.
- W4249562567 cites W2046024882 @default.
- W4249562567 cites W2048872905 @default.
- W4249562567 cites W2057349912 @default.
- W4249562567 cites W2059178266 @default.
- W4249562567 cites W2060277453 @default.
- W4249562567 cites W2063565692 @default.
- W4249562567 cites W2066595509 @default.
- W4249562567 cites W2068162320 @default.
- W4249562567 cites W2078396592 @default.
- W4249562567 cites W2082336465 @default.
- W4249562567 cites W2091178977 @default.
- W4249562567 cites W2092076602 @default.
- W4249562567 cites W2092960018 @default.
- W4249562567 cites W2103049394 @default.
- W4249562567 cites W2130871307 @default.
- W4249562567 cites W2186936048 @default.
- W4249562567 cites W4230580486 @default.
- W4249562567 doi "https://doi.org/10.1007/978-1-84882-872-8_5" @default.
- W4249562567 hasPublicationYear "2010" @default.
- W4249562567 type Work @default.
- W4249562567 citedByCount "7" @default.
- W4249562567 countsByYear W42495625672018 @default.
- W4249562567 countsByYear W42495625672019 @default.
- W4249562567 countsByYear W42495625672021 @default.
- W4249562567 countsByYear W42495625672022 @default.
- W4249562567 countsByYear W42495625672023 @default.
- W4249562567 crossrefType "book-chapter" @default.
- W4249562567 hasConcept C100402318 @default.
- W4249562567 hasConcept C104308156 @default.
- W4249562567 hasConcept C111368507 @default.
- W4249562567 hasConcept C127313418 @default.
- W4249562567 hasConcept C127413603 @default.
- W4249562567 hasConcept C15098985 @default.
- W4249562567 hasConcept C159985019 @default.
- W4249562567 hasConcept C162284963 @default.
- W4249562567 hasConcept C178790620 @default.
- W4249562567 hasConcept C184751465 @default.
- W4249562567 hasConcept C185592680 @default.
- W4249562567 hasConcept C187320778 @default.
- W4249562567 hasConcept C192562407 @default.
- W4249562567 hasConcept C2777737062 @default.
- W4249562567 hasConcept C2777955874 @default.
- W4249562567 hasConcept C2781060337 @default.
- W4249562567 hasConcept C39432304 @default.
- W4249562567 hasConcept C516920438 @default.
- W4249562567 hasConcept C548081761 @default.
- W4249562567 hasConcept C59427239 @default.
- W4249562567 hasConcept C78762247 @default.
- W4249562567 hasConceptScore W4249562567C100402318 @default.
- W4249562567 hasConceptScore W4249562567C104308156 @default.
- W4249562567 hasConceptScore W4249562567C111368507 @default.
- W4249562567 hasConceptScore W4249562567C127313418 @default.
- W4249562567 hasConceptScore W4249562567C127413603 @default.
- W4249562567 hasConceptScore W4249562567C15098985 @default.
- W4249562567 hasConceptScore W4249562567C159985019 @default.
- W4249562567 hasConceptScore W4249562567C162284963 @default.
- W4249562567 hasConceptScore W4249562567C178790620 @default.
- W4249562567 hasConceptScore W4249562567C184751465 @default.
- W4249562567 hasConceptScore W4249562567C185592680 @default.
- W4249562567 hasConceptScore W4249562567C187320778 @default.
- W4249562567 hasConceptScore W4249562567C192562407 @default.
- W4249562567 hasConceptScore W4249562567C2777737062 @default.
- W4249562567 hasConceptScore W4249562567C2777955874 @default.
- W4249562567 hasConceptScore W4249562567C2781060337 @default.
- W4249562567 hasConceptScore W4249562567C39432304 @default.