Matches in SemOpenAlex for { <https://semopenalex.org/work/W4249937384> ?p ?o ?g. }
- W4249937384 endingPage "1241" @default.
- W4249937384 startingPage "1225" @default.
- W4249937384 abstract "Big data analytics with the cloud computing are one of the emerging area for processing and analytics. Fog computing is the paradigm where fog devices help to reduce latency and increase throughput for assisting at the edge of the client. This article discusses the emergence of fog computing for mining analytics in big data from geospatial and medical health applications. This article proposes and develops a fog computing-based framework, i.e. FogLearn. This is for the application of K-means clustering in Ganga River Basin Management and real-world feature data for detecting diabetes patients suffering from diabetes mellitus. The proposed architecture employs machine learning on a deep learning framework for the analysis of pathological feature data that obtained from smart watches worn by the patients with diabetes and geographical parameters of River Ganga basin geospatial database. The results show that fog computing holds an immense promise for the analysis of medical and geospatial big data." @default.
- W4249937384 created "2022-05-12" @default.
- W4249937384 creator A5008933435 @default.
- W4249937384 creator A5033701513 @default.
- W4249937384 creator A5035529348 @default.
- W4249937384 creator A5041898793 @default.
- W4249937384 creator A5056138326 @default.
- W4249937384 date "2019-01-01" @default.
- W4249937384 modified "2023-10-16" @default.
- W4249937384 title "FogLearn" @default.
- W4249937384 cites W146504610 @default.
- W4249937384 cites W1541250240 @default.
- W4249937384 cites W1973422732 @default.
- W4249937384 cites W2001703222 @default.
- W4249937384 cites W2003522902 @default.
- W4249937384 cites W2012275375 @default.
- W4249937384 cites W2018599481 @default.
- W4249937384 cites W2033091006 @default.
- W4249937384 cites W2038803806 @default.
- W4249937384 cites W2049216875 @default.
- W4249937384 cites W2095483845 @default.
- W4249937384 cites W2146567529 @default.
- W4249937384 cites W2170962024 @default.
- W4249937384 cites W2242716426 @default.
- W4249937384 cites W2295019192 @default.
- W4249937384 cites W2405510936 @default.
- W4249937384 cites W2412667021 @default.
- W4249937384 cites W2472333518 @default.
- W4249937384 cites W2548753368 @default.
- W4249937384 cites W2562092129 @default.
- W4249937384 cites W2573243474 @default.
- W4249937384 cites W2575966974 @default.
- W4249937384 cites W2591382767 @default.
- W4249937384 cites W2679983068 @default.
- W4249937384 cites W2740498614 @default.
- W4249937384 cites W2750338819 @default.
- W4249937384 cites W2766965215 @default.
- W4249937384 cites W2773597698 @default.
- W4249937384 cites W2963394089 @default.
- W4249937384 cites W2963455237 @default.
- W4249937384 cites W3099514111 @default.
- W4249937384 doi "https://doi.org/10.4018/978-1-5225-8054-6.ch052" @default.
- W4249937384 hasPublicationYear "2019" @default.
- W4249937384 type Work @default.
- W4249937384 citedByCount "1" @default.
- W4249937384 countsByYear W42499373842020 @default.
- W4249937384 crossrefType "book-chapter" @default.
- W4249937384 hasAuthorship W4249937384A5008933435 @default.
- W4249937384 hasAuthorship W4249937384A5033701513 @default.
- W4249937384 hasAuthorship W4249937384A5035529348 @default.
- W4249937384 hasAuthorship W4249937384A5041898793 @default.
- W4249937384 hasAuthorship W4249937384A5056138326 @default.
- W4249937384 hasConcept C111919701 @default.
- W4249937384 hasConcept C123657996 @default.
- W4249937384 hasConcept C124101348 @default.
- W4249937384 hasConcept C154945302 @default.
- W4249937384 hasConcept C166957645 @default.
- W4249937384 hasConcept C175801342 @default.
- W4249937384 hasConcept C205649164 @default.
- W4249937384 hasConcept C2522767166 @default.
- W4249937384 hasConcept C2778456923 @default.
- W4249937384 hasConcept C41008148 @default.
- W4249937384 hasConcept C58640448 @default.
- W4249937384 hasConcept C73555534 @default.
- W4249937384 hasConcept C75684735 @default.
- W4249937384 hasConcept C79158427 @default.
- W4249937384 hasConcept C79974875 @default.
- W4249937384 hasConcept C9770341 @default.
- W4249937384 hasConceptScore W4249937384C111919701 @default.
- W4249937384 hasConceptScore W4249937384C123657996 @default.
- W4249937384 hasConceptScore W4249937384C124101348 @default.
- W4249937384 hasConceptScore W4249937384C154945302 @default.
- W4249937384 hasConceptScore W4249937384C166957645 @default.
- W4249937384 hasConceptScore W4249937384C175801342 @default.
- W4249937384 hasConceptScore W4249937384C205649164 @default.
- W4249937384 hasConceptScore W4249937384C2522767166 @default.
- W4249937384 hasConceptScore W4249937384C2778456923 @default.
- W4249937384 hasConceptScore W4249937384C41008148 @default.
- W4249937384 hasConceptScore W4249937384C58640448 @default.
- W4249937384 hasConceptScore W4249937384C73555534 @default.
- W4249937384 hasConceptScore W4249937384C75684735 @default.
- W4249937384 hasConceptScore W4249937384C79158427 @default.
- W4249937384 hasConceptScore W4249937384C79974875 @default.
- W4249937384 hasConceptScore W4249937384C9770341 @default.
- W4249937384 hasLocation W42499373841 @default.
- W4249937384 hasOpenAccess W4249937384 @default.
- W4249937384 hasPrimaryLocation W42499373841 @default.
- W4249937384 hasRelatedWork W2197072964 @default.
- W4249937384 hasRelatedWork W2466227824 @default.
- W4249937384 hasRelatedWork W2547221248 @default.
- W4249937384 hasRelatedWork W2768171971 @default.
- W4249937384 hasRelatedWork W2777112960 @default.
- W4249937384 hasRelatedWork W2889456352 @default.
- W4249937384 hasRelatedWork W3001314966 @default.
- W4249937384 hasRelatedWork W3098832892 @default.
- W4249937384 hasRelatedWork W3180337491 @default.
- W4249937384 hasRelatedWork W4249937384 @default.
- W4249937384 isParatext "false" @default.