Matches in SemOpenAlex for { <https://semopenalex.org/work/W4249956868> ?p ?o ?g. }
- W4249956868 endingPage "252" @default.
- W4249956868 startingPage "247" @default.
- W4249956868 abstract "Free Access References Oliver C. Ibe, Oliver C. Ibe University of Massachusetts, Lowell, MassachusettsSearch for more papers by this author Book Author(s):Oliver C. Ibe, Oliver C. Ibe University of Massachusetts, Lowell, MassachusettsSearch for more papers by this author First published: 30 August 2013 https://doi.org/10.1002/9781118618059.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Achlioptas, D., R.M. D'Souza and J. Spencer (2009). “Explosive Percolation in Random Networks,” Science, vol. 323, pp. 1453– 1455. Addison, P.S. (1997). Fractals and Chaos: An Introductory Course, Institute of Physics Publishing, Bristol, UK. Adler, J. and A. Aharony (1988). “Diffusion Percolation I: Infinite Time Limit and Bootstrap Percolation,” Journal of Physics A: Mathematical and General, vol. 21, pp. 1387– 1404. Argyrakis, P. and K.W. Kehr (1992). “Mean Number of Distinct Sites Visited by Correlated Walks II: Disordered Lattices,” Journal of Chemical Physics, vol. 97, pp. 2718– 2723. Bandyopadhyay, S., E.J. Coyle and T. Falck (2006). “ Stochastic Properties of Mobility Models in Mobile Ad Hoc Networks,” Proceedings of the 40th Annual Conference on Information Sciences and Systems, pp. 1205– 1211. Barber, M.N. and B.W. Ninham (1970). Random and Restricted Walks: Theory and Applications, Gordon and Breach Science Publishers, New York. Benassi, A., S. Jaffard and D. Roux (1997). “Elliptic Gaussian Random Processes,” Revista Matematica Iberoamericana, vol. 13, pp. 19– 90. Benhamou, S. (2007). “How Many Animals Do the Levy Walk?” Ecology, vol. 88, pp. 1962– 1969. Benth, F.E. (2004). Option Theory with Stochastic Analysis: An Introduction to Mathematical Finance, Springer, New York. Bohm, W. (2000). “The Correlated Random Walk with Boundaries: A Combinatorial Solution,” Journal of Applied Probability, vol. 37, pp. 470– 479. Bohman, T. and A. Frieze (2001). “Avoiding a Giant Component,” Random Structures Algorithms, vol. 19, pp. 75– 85. Bollobas, B. (1984). “The Evolution of Random Graphs,” Transactions of the American Mathematical Society, vol. 286, pp. 257– 274. Bouchaud, J.P. and A. Georges (1990). “Anomalous Diffusion in Disordered Media: Statistical Mechanics, Models and Physical Applications,” Physics Reports, vol. 195, pp. 127– 293. Broadbent, S.R. and J.M. Hammersley (1957). “Percolation Processes, I: Crystals and Mazes,” Proceedings of the Cambridge Philosophical Society, vol. 53, pp. 629– 641. Brockmann, D. and L. Hufnagel (2007). “Front Propagation in Reaction-Superdiffusion Dynamics: Taming Lévy Flights with Fluctuations,” Physical Review Letters, vol. 98, p. 178301. Brockmann, D., L. Hufnagel and T. Geisel (2006). “The Scaling Laws of Human Travel,” Nature, vol. 439, pp. 462– 465. Buchanan, M. (2008). “Ecological Modeling: The Mathematical Mirror to Animal Nature,” Nature, vol. 453, pp. 714– 716. Burnecki, K., J. Janczura, M. Magdziarz and A. Weron (2008). “Can One See a Competition Between Subdiffusion and Levy Flights: A Case of Geometric-Stable Noise,” Acta Physica Polonica B, vol. 39, pp. 1043– 1054. Byers, J.A. (2001). “Correlated Random Walk Equations of Animal Dispersal Resolved by Simulation,” Ecology, vol. 82, pp. 1680– 1690. Capasso, V. and D. Bakstein (2005). An Introduction to Continuous-Time Stochastic Processes: Theory, Models and Applications to Finance, Biology and Medicine, Birkhauser, Boston, Massachusetts. Chalupa, J., P.L. Leath and G.R. Reich (1979). “Bootstrap Percolation on a Bethe Lattice,” Journal of Physics C: Solid State Physics, vol. 12, pp. L31– L35. Chechkin, A.V., R. Metzler, V.Y Gonchar, J. Klafter and L.V. Tanatarov. (2003). “First Passage and Arrival Densities for Levy Flights and the Failure of the Method of Images,” Journal of Physics A: Mathematical and General, vol. 36, pp. L537– L544. Codling, E.A. (2003). “ Biased Random Walks in Biology,” PhD Thesis, University of Leeds, UK. Codling, E.A., M.J. Plank, and S. Benhamou (2008). “Random Walk Models in Biology,” Journal of Royal Society Interface, vol. 5, pp. 813– 834. Cohen, R. and S. Havlin (2010). Complex Networks: Structure, Robustness and Function, Cambridge University Press, Cambridge, UK. Coppersmith, D. and P. Diaconis (1987). “ Random Walk with Reinforcement,” Unpublished manuscript. Dasgupta, A. (1998). “ Fractional Brownian Motion: Its Properties and Applications to Stochastic Integration,” Ph.D. Thesis, University of North Carolina. Davis, B. (1990). “Reinforced Random Walk,” Probability Theory and Related Fields, vol. 84, pp. 203– 229. de Gennes, P.G. (1976). “La Percolation: Un Concept Unificateur,” La Recherche, vol. 7, pp. 919– 927. Diethelm, K. (2010). The Analysis of Fractional Differential Equations, Springer, New York. Dorogovtsev, S.N. (2010). Lectures on Complex Networks, Oxford University Press, Oxford, UK. Edwards, A.M., R.A. Phillips, N.W. Watkins, M.P. Freeman, E.J. Murphy, V. Afanasyev, S.V. Buldyrev, M.G.E. da Luz, E.P. Raposo, H.E. Stanley and G.M. Viswanathan (2007). “Revisiting Levy Flight Search Patterns of Wandering Albatrosses, Bumblebees and Deer,” Nature, vol. 449, pp. 1044– 1048. Escande, D.F. and F. Sattin (2007). “When Can the Fokker-Planck Equation Describe Anomalous or Chaotic Transport?” Physical Review Letters, vol. 99, p. 185005. Gilbert, E.N. (1961). “Random Plane Networks,” Journal of the Society for Industrial and Applied Mathematics, vol. 9, pp. 533– 543. Gillespie, D.T. (1996). “The Mathematics of Brownian Motion and Johnson Noise,” American Journal of Physics, vol. 64, pp. 225– 240. Gillis, J. (1955). “Correlated Random Walk,” Proceedings of the Cambridge Philosophical Society, vol. 51, pp. 639– 651. Goldstein, S. (1951). “On Diffusion by Discontinuous Movements, and on the Telegraph Equation,” Quarterly Journal of Mechanics, vol. 4, pp. 129– 156. Gonzales, M.C., C.A. Hidalgo and A.-L. Barabasi (2008). “Understanding Individual Human Mobility Patterns,” Nature, vol. 453, pp. 779– 782. Hanneken, J.W. and D.R. Franceschetti (1998). “Exact Distribution Function for Discrete Time Correlated Random Walks in One Dimension,” Journal of Chemical Physics, vol. 109, pp. 6533– 6539. Haus, J.W and K.W. Kehr (1987). “Diffusion in Regular and Disordered Lattices,” Physics Reports, vol. 150, pp. 263– 416. Havlin, S. and D. Ben-Avraham (2002). “Diffusion in Disordered Media,” Advances in Physics, vol. 51, pp. 187– 292. Helmstetter, A. and D. Sornette (2002). “Diffusion of Earthquake Aftershocks, Omori's Law, and Generalized Continuous-time Random Walk Models,” Physics Review E, vol. 66, p. 061104. Hemmer, S. and P. C. Hemmer (1984). “An Average Self-avoiding Random Walk on the Square Lattice Lasts 71 Steps,” Journal of Chemical Physics, vol. 81, pp. 584– 585. Herrmann, R. (2011). Fractional Calculus: An Introduction for Physicists, World Scientific Publishing Co., Singapore. Huang, K. (1987). Statistical Mechanics, 2nd ed. John Wiley & Sons, New York. Hughes, B.D. (1995). Random Walk and Random Environments, Vol. 1. Oxford University Press, Oxford, UK. Ibe, O.C. (2005). Fundamentals of Applied Probability and Random Processes, Academic Press, New York. Jain, G.C. (1971). “Some Results in a Correlated Random Walk,” Canadian Mathematical Bulletin, vol. 14, pp. 341– 347. Jonsen, I.D., J.M. Flemming and R.A. Myers (2005). “Roburst State-Space Modeling of Animal Movement Data,” Ecology, vol. 86, pp. 2874– 2880. Kareiva, P.M. and N. Shigesada (1983). “Analyzing Insect Movement as a Correlated Random Walk,” Oecologia, vol. 56, pp. 234– 238. Kehr, K.W. and P. Argyrakis (1986). “Mean Number of Distinct Sites Visited by Correlated Walks I: Perfect Lattices,” Journal of Chemical Physics, vol. 84, pp. 5816– 5823. Keller, J.B. (2004). “Diffusion at Finite Speed and Random Walk,” Proceedings of the National Academy of Sciences, vol. 101, pp. 1120– 1122. Kilbas, A., H.M. Srivastava and J.J. Trujillo (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands. Klebaner, F.C. (2005). Introduction to Stochastic Calculus with Applications, 2nd ed. Imperial College Press, London. Koren, T., J. Klafter and M. Magdziarz (2007a). “First Passage Times of Lévy Flights Coexisting with Subdiffusion,” Physical Review E, vol. 76, p. 031129. Koren, T., A.V. Chechkin and J. Klafter (2007b). “On the First Passage Time and Leapover Properties of Lévy Motions,” Physica A, vol. 379, pp. 10– 22. Koren, T., M.A. Lombolt, A.V. Chechkin, J. Klafter, and R. Metzler (2007c). “Leapover Lengths and First Passage Time Statistics for Levy Flights,” Physical Review Letters, vol. 99, p. 160602. Lal, R. and U.N. Bhat (1989). “Some Explicit Results for Correlated Random Walks,” Journal of Applied Probability, vol. 27, pp. 756– 766. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature, W.H. Freeman and Co., San Francisco Mandelbrot, B.B. and J.W. van Ness (1968). “Fractional Brownian Motions, Fractional Noises and Applications,” SIAM Review, vol. 10, pp. 422– 437. Mantegna, R.N. and H.E. Stanley (1994). “Stochastic Processes with Ultraslow Convergence to a Gaussian: the Truncated Levy Flight,” Physical Review Letters, vol. 73, pp. 2946– 2949. Mantegna, R.N. and H.E. Stanley (2000). An Introduction to Econophysics, Cambridge University Press, Cambridge, UK. Masoliver, J. and M. Montero (2003). “Continuous-time Random-walk Model for Financial Distributions,” Physical Review E, vol. 67, p. 021112. Masoliver, J., M. Montero, J. Perello and G.H. Weiss (2006). “The Continuous Time Random Walk Formalism in Financial Markets,” Journal of Economic Behavior & Organization, vol. 61, pp. 577– 598. Metzler, R. and J. Klafter (2000). “The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Physics Reports, vol. 339, pp. 1– 77. Metzler, R. and J. Klafter (2004). “The Restaurant at the end of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics,” Journal of Physics A: Mathematical and General, vol. 37, pp. R161– R208. Mikosch, T., S. Resnick, H. Rootzen and A. Stegeman (2002). “Is Network Traffic Approximated by Stable Levy Motion or Fractional Brownian Motion?” Annals of Applied Probability, vol. 12, pp. 23– 68. Mohan, C. (1955). “The Gambler's Ruin Problem with Correlation,” Biometrika, vol. 42, pp. 486– 493. Montroll, E.W. and M.F. Shlensinger (1984). In Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, J.L. Lebowitz and E.W. Montroll (editors), North-Holland, Amsterdam, The Netherlands, pp. 1– 121. Montroll, E.W. and G.H. Weiss (1965). “Random Walks on Lattice II,” Journal of Mathematical Physics, vol. 6, pp. 167– 181. Narayanan, R.G.L. (2011). “ An Architecture for Disaster Recovery and Search and Rescue Wireless Networks,” Ph.D. Thesis, Department of Electrical and Computer Engineering, University of Massachusetts Lowell. Norros, I. (1995). “On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks,” IEEE Journal on Selected Areas in Communications, vol. 13, pp. 953– 962. Oksendale, B. (2005). Stochastic Differential Equations, 6th ed. Springer, New York. Oldham, K.B. and J. Spanier (1974). The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York. (Dover Publication edition, 2006). Othmer, H.G., S.R., Dunbar, and W. Alt (1988). “Models of Dispersal in Biological Systems,” Journal of Mathematical Biology, vol. 26, pp. 263– 298. Paoletti, M.S., C.R. Nugent, T.H. Solomon (2006). “Synchronization of Oscillating Reactions in an Extended Fluid System,” Physical Review Letters, vol. 96, p. 124101. Peltier, R.F. and J.L. Vehel (1995). “Multifractional Brownian Motion: Definition and Preliminary Results,” INRIA Technical Report No. 2645. Pemantle, R. (2007). “A Survey of Random Processes with Reinforcement,” Probability Surveys, vol. 4, pp. 1– 79. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, California. Porto, M. and H.E. Roman (2002). “Autoregressive Processes with Exponentially Decaying Probability Distribution Functions: Application to Daily Variations of a Stock Market Index,” Physical Review E, vol. 65, p. 046149. Renshaw, E. and R. Henderson (1981). “The Correlated Random Walk,” Journal of Applied Probability, vol. 18, pp. 403– 414. Rhee, I., M. Shin, S. Hong, K. Lee and S. Chong (2008). “ On the Levy-walk Nature of Human Mobility,” Proceedings of the IEEE INFOCOM, pp. 1597– 1605. Rogers, L.C.G. (1997). “Arbitrage with Fractional Brownian Motion,” Mathematical Finance, vol. 7, pp. 95– 105. Roman, H.E. and M. Porto (2008). “Fractional Derivatives of Random Walks: Time Series with Long-time Memory,” Physical Review E, vol. 78, p. 031127. Scalas, E. (2006a). “ Five Years of Continuous-time Random Walks in Econophysics,” in The Compplex Networks of Economic Interactions: Essays in Agent-Based Economics and Econophysics, A. Namatame, T. Kaizouji and Y. Aruga (editors), Springer, Tokyo, pp. 1– 16. Scalas, E. (2006b). “The Application of Continuous-time Random Walks in Finance and Economics,” Physica A, vol. 362, pp. 225– 239. Scher, H. and E.W. Montroll (1975). “Anomalous Transition-Time Dispersion in Amorphous Solids,” Physical Review B, vol. 12, pp. 2455– 2477. Seth, A. (1963). “The Correlated Unrestricted Random Walk,” Journal of the Royal Statistical Society, Series B, vol. 25, pp. 394– 400. Slade, G. (1994). “Self-Avoiding Walks,” The Mathematical Intelligencer, vol. 16, pp. 29– 35. Song, C., S. Havlin, and H. A. Makse (2006), “Origins of Fractality in the Growth of Complex Networks,” Nature Physics, vol. 2, pp. 275– 281. Sottinen, T. (2001). “Fractional Brownian Motion, Random Walks and Binary Market Models,” Finance and Stochastics, vol. 5, pp. 343– 355. Sparre Andersen, E. (1953). “On Fluctuations of Sums of Random Variables,” Mathematica Scandinavica, vol. 1, pp. 263– 285. Sparre Andersen, E. (1954). “On Fluctuations of Sums of Random Variables II,” Mathematica Scandinavica, vol. 2, pp. 194– 223. Stanley, H.E., L.A.N. Amaral, D. Canning, P. Gopikrishnan, Y. Lee and Y. Liu (1999). “Econophysics: Can Physicists Contribute to the Science of Economics?” Physica A, vol. 269, pp. 156– 169. Steele, M.J. (2001). Stochastic Calculus and Financial Applications, Springer, New York. Tambasco, M., M. Eliasziw and A.M. Magliocco (2010). “Morphologic Complexity of Epithelial Architecture for Predicting Invasive Breast Cancer Survival,” Journal of Translational Medicine, vol. 8, p. 140. Temperley, H.N.V. (1956). “Combinatorial Problems Suggested by the Statistical Mechanics of Domains and Rubber-like Molecules,” Physical Review, vol. 103, pp. 1– 16. Vainstein, M.H., L.C. Lapas and F.A. Oliveira (2008), “Anomalous Diffusion,” Acta Physica Polonica B, vol. 39, pp. 1273– 1281. Van Duen, J. and R. Cools (2006). “Algorithm 858: Computing Infinite Range Integrals of an Arbitrary Product of Bessel Functions,” ACM Transactions on Mathematical Software, vol. 32, pp. 580– 596. Van Duen, J. and R. Cools (2008). “Integrating Products of Bessel Functions with an Additional Exponential or Rational Factor,” Computer Physics Communications, vol. 178, pp. 578– 590. Verdier, P.H. and E.A. DiMarzio (1969). “On the Mean Dimensions of Restricted Random Walks,” Journal of Research of the National Bureau of Standards – B: Mathematical Sciences, vol. 73B, pp. 45– 46. Viswanathan, G.M., S.V. Buldyrev, S. Havlin, M.G.E. da Luz, E.P. Raposo and H.E. Stanley (1999). “Optimizing the Success of Random Searches,” Nature, vol. 401, pp. 911– 914. Weiss, G.H., J.M. Porra and J. Masoliver (1998). “Statistics of the Depth Probed by CW Measurements of Photons in a Turbid Medium,” Physical Review E, vol. 58, pp. 6431– 6439. Wilf, H.S. (1990). Generatingfunctionology, Academic Press, Boston, Massachusetts, p. 50. Zaslavsky, G.M. (2002). “Chaos, Fractional Kinetics, and Anomalous Transport,” Physics Reports, vol. 371, 461– 580. Elements of Random Walk and Diffusion Processes ReferencesRelatedInformation" @default.
- W4249956868 created "2022-05-12" @default.
- W4249956868 date "2013-08-30" @default.
- W4249956868 modified "2023-10-17" @default.
- W4249956868 title "References" @default.
- W4249956868 cites W1513487224 @default.
- W4249956868 cites W1539851785 @default.
- W4249956868 cites W1610677200 @default.
- W4249956868 cites W1816275442 @default.
- W4249956868 cites W1967200406 @default.
- W4249956868 cites W1968771657 @default.
- W4249956868 cites W1969754919 @default.
- W4249956868 cites W1977360274 @default.
- W4249956868 cites W1978094758 @default.
- W4249956868 cites W1980790279 @default.
- W4249956868 cites W1982300822 @default.
- W4249956868 cites W1984863875 @default.
- W4249956868 cites W1989941945 @default.
- W4249956868 cites W1993255928 @default.
- W4249956868 cites W1998133855 @default.
- W4249956868 cites W2004056472 @default.
- W4249956868 cites W2006646483 @default.
- W4249956868 cites W2012893069 @default.
- W4249956868 cites W2016891334 @default.
- W4249956868 cites W2017831033 @default.
- W4249956868 cites W2018791357 @default.
- W4249956868 cites W2025426208 @default.
- W4249956868 cites W2025673572 @default.
- W4249956868 cites W2026177249 @default.
- W4249956868 cites W2026237857 @default.
- W4249956868 cites W2027481668 @default.
- W4249956868 cites W2027508917 @default.
- W4249956868 cites W2029136329 @default.
- W4249956868 cites W2031753087 @default.
- W4249956868 cites W2035985216 @default.
- W4249956868 cites W2036974279 @default.
- W4249956868 cites W2037835420 @default.
- W4249956868 cites W2044449143 @default.
- W4249956868 cites W2044704194 @default.
- W4249956868 cites W2044795487 @default.
- W4249956868 cites W2048421273 @default.
- W4249956868 cites W2049517298 @default.
- W4249956868 cites W2056284729 @default.
- W4249956868 cites W2058841213 @default.
- W4249956868 cites W2062517214 @default.
- W4249956868 cites W2064361774 @default.
- W4249956868 cites W2069252558 @default.
- W4249956868 cites W2077310260 @default.
- W4249956868 cites W2088521668 @default.
- W4249956868 cites W2093333368 @default.
- W4249956868 cites W2093590637 @default.
- W4249956868 cites W2094495898 @default.
- W4249956868 cites W2094669363 @default.
- W4249956868 cites W2095403663 @default.
- W4249956868 cites W2100376401 @default.
- W4249956868 cites W2103636969 @default.
- W4249956868 cites W2111271983 @default.
- W4249956868 cites W2111694701 @default.
- W4249956868 cites W2120640550 @default.
- W4249956868 cites W2124620415 @default.
- W4249956868 cites W2128225766 @default.
- W4249956868 cites W2145037371 @default.
- W4249956868 cites W2145287259 @default.
- W4249956868 cites W2159070915 @default.
- W4249956868 cites W2160058983 @default.
- W4249956868 cites W2170486501 @default.
- W4249956868 cites W217881882 @default.
- W4249956868 cites W2252352499 @default.
- W4249956868 cites W2264658725 @default.
- W4249956868 cites W2312361703 @default.
- W4249956868 cites W2316236308 @default.
- W4249956868 cites W2317234008 @default.
- W4249956868 cites W2323783190 @default.
- W4249956868 cites W2485537568 @default.
- W4249956868 cites W2594269574 @default.
- W4249956868 cites W4229928878 @default.
- W4249956868 cites W4236398741 @default.
- W4249956868 cites W4240151289 @default.
- W4249956868 cites W4240465921 @default.
- W4249956868 cites W4241669766 @default.
- W4249956868 cites W4245391281 @default.
- W4249956868 cites W4246877238 @default.
- W4249956868 cites W4247953052 @default.
- W4249956868 cites W2000402852 @default.
- W4249956868 doi "https://doi.org/10.1002/9781118618059.refs" @default.
- W4249956868 hasPublicationYear "2013" @default.
- W4249956868 type Work @default.
- W4249956868 citedByCount "0" @default.
- W4249956868 crossrefType "other" @default.
- W4249956868 hasConcept C41008148 @default.
- W4249956868 hasConceptScore W4249956868C41008148 @default.
- W4249956868 hasLocation W42499568681 @default.
- W4249956868 hasOpenAccess W4249956868 @default.
- W4249956868 hasPrimaryLocation W42499568681 @default.
- W4249956868 hasRelatedWork W1596801655 @default.
- W4249956868 hasRelatedWork W2130043461 @default.
- W4249956868 hasRelatedWork W2350741829 @default.
- W4249956868 hasRelatedWork W2358668433 @default.