Matches in SemOpenAlex for { <https://semopenalex.org/work/W4250654371> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4250654371 abstract "Abstract The issue of air quality has attracted more and more attention. The main methods for monitoring the concentration of pollutants in the air include national monitoring station monitoring and micro air quality detector testing. Since the electrochemical sensor of the micro air quality detector is susceptible to interference, the monitored data has a certain deviation. In this paper, the combined model of partial least square regression and random forest regression (PLS-RFR) is used to correct the detection data of the micro air quality detector. First, correlation analysis is used to find out the factors that affect the concentration of pollutants. Second, partial least squares regression is used to give the quantitative relationship of the influence of each influencing factor on the concentration of pollutants. Finally, the predicted value of partial least squares regression and various influencing factors are used as independent variables, and the pollutant concentration monitored by the national monitoring station is used as the dependent variable, and the PLS-RFR model is obtained with the help of random forest software package. Relative Mean Absolute Percent Error (MAPE), Mean Absolute Error (MAE), goodness of fit ( R 2 ), and Root Mean Square Error (RMSE) are used as evaluation indicators to compare PLS-RFR model, support vector machine model and multilayer perceptron neural network. The results show that no matter which evaluation index, the prediction effect of the PLS-RFR model is the best, and the model has a good prediction effect in the training set or the test set, indicating that the model has good generalization ability. This model can play an active role in the promotion and deployment of micro air quality detectors." @default.
- W4250654371 created "2022-05-12" @default.
- W4250654371 creator A5014528965 @default.
- W4250654371 creator A5046765281 @default.
- W4250654371 creator A5055509734 @default.
- W4250654371 creator A5068602371 @default.
- W4250654371 creator A5087089173 @default.
- W4250654371 date "2021-02-26" @default.
- W4250654371 modified "2023-10-12" @default.
- W4250654371 title "Research on data correction method of micro air quality detector based on combination of partial least squares and random forest regression" @default.
- W4250654371 doi "https://doi.org/10.21203/rs.3.rs-241776/v1" @default.
- W4250654371 hasPublicationYear "2021" @default.
- W4250654371 type Work @default.
- W4250654371 citedByCount "1" @default.
- W4250654371 countsByYear W42506543712023 @default.
- W4250654371 crossrefType "posted-content" @default.
- W4250654371 hasAuthorship W4250654371A5014528965 @default.
- W4250654371 hasAuthorship W4250654371A5046765281 @default.
- W4250654371 hasAuthorship W4250654371A5055509734 @default.
- W4250654371 hasAuthorship W4250654371A5068602371 @default.
- W4250654371 hasAuthorship W4250654371A5087089173 @default.
- W4250654371 hasBestOaLocation W42506543711 @default.
- W4250654371 hasConcept C105795698 @default.
- W4250654371 hasConcept C119857082 @default.
- W4250654371 hasConcept C139945424 @default.
- W4250654371 hasConcept C150217764 @default.
- W4250654371 hasConcept C152877465 @default.
- W4250654371 hasConcept C169258074 @default.
- W4250654371 hasConcept C179717631 @default.
- W4250654371 hasConcept C22354355 @default.
- W4250654371 hasConcept C33923547 @default.
- W4250654371 hasConcept C41008148 @default.
- W4250654371 hasConcept C48921125 @default.
- W4250654371 hasConcept C50644808 @default.
- W4250654371 hasConceptScore W4250654371C105795698 @default.
- W4250654371 hasConceptScore W4250654371C119857082 @default.
- W4250654371 hasConceptScore W4250654371C139945424 @default.
- W4250654371 hasConceptScore W4250654371C150217764 @default.
- W4250654371 hasConceptScore W4250654371C152877465 @default.
- W4250654371 hasConceptScore W4250654371C169258074 @default.
- W4250654371 hasConceptScore W4250654371C179717631 @default.
- W4250654371 hasConceptScore W4250654371C22354355 @default.
- W4250654371 hasConceptScore W4250654371C33923547 @default.
- W4250654371 hasConceptScore W4250654371C41008148 @default.
- W4250654371 hasConceptScore W4250654371C48921125 @default.
- W4250654371 hasConceptScore W4250654371C50644808 @default.
- W4250654371 hasLocation W42506543711 @default.
- W4250654371 hasOpenAccess W4250654371 @default.
- W4250654371 hasPrimaryLocation W42506543711 @default.
- W4250654371 hasRelatedWork W1230133629 @default.
- W4250654371 hasRelatedWork W2375721435 @default.
- W4250654371 hasRelatedWork W2616061094 @default.
- W4250654371 hasRelatedWork W2797282764 @default.
- W4250654371 hasRelatedWork W2869184005 @default.
- W4250654371 hasRelatedWork W3128923042 @default.
- W4250654371 hasRelatedWork W4250654371 @default.
- W4250654371 hasRelatedWork W4285733885 @default.
- W4250654371 hasRelatedWork W4308089479 @default.
- W4250654371 hasRelatedWork W3111430581 @default.
- W4250654371 isParatext "false" @default.
- W4250654371 isRetracted "false" @default.
- W4250654371 workType "article" @default.