Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251268258> ?p ?o ?g. }
- W4251268258 endingPage "336" @default.
- W4251268258 startingPage "313" @default.
- W4251268258 abstract "Free Access References Richard Jensen, Richard Jensen Aberystwyth University, United KingdomSearch for more papers by this authorQiang Shen, Qiang Shen Aberystwyth University, United KingdomSearch for more papers by this author Book Author(s):Richard Jensen, Richard Jensen Aberystwyth University, United KingdomSearch for more papers by this authorQiang Shen, Qiang Shen Aberystwyth University, United KingdomSearch for more papers by this author First published: 29 January 2008 https://doi.org/10.1002/9780470377888.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References C. G. G. Aitken and F. Taroni. Statistics and the Evaluation of Evidence for Forensic Scientists, 2nd ed. New York: Wiley. 2004. Wiley Online LibraryGoogle Scholar C. G. G. Aitken, G. Zadora, and D. Lucy. A two-level model for evidence evaluation. J. Forensic Sci. 52: 412– 419. 2007. Forthcoming. Wiley Online LibraryPubMedWeb of Science®Google Scholar C. G. G. Aitken, Q. Shen, R. Jensen, and B. Hayes. The evaluation of evidence for exponentially distributed data. Comput. Stat. Data Anal. 12(12): 5682– 5693. 2007. CrossrefWeb of Science®Google Scholar H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In 9th National Conference on Artificial Intelligence. Cambridge: MIT Press, pp. 547– 552. 1991. Web of Science®Google Scholar J. J. Alpigini, J. F. Peters, J. Skowronek, and N. Zhong, eds. Rough Sets and Current Trends in Computing. Proceedings. 3rd International Conference, Malvern, PA, October 14– 16, 2002. Lecture Notes in Computer Science 2475. Berlin: Springer. 2002. Google Scholar K. K. Ang and C. Quek. Stock trading using RSPOP: a novel rough set-based neuro-fuzzy approach. IEEE Trans. Neural Net. 17(5): 1301– 1315. 2006. CrossrefPubMedWeb of Science®Google Scholar C. Apté, F. Damerau, and S. M. Weiss. Automated learning of decision rules for text categorization. ACM Trans. Inf. Sys. 12(3): 233– 251. 1994. CrossrefWeb of Science®Google Scholar S. Asharaf and M. N. Murty. An adaptive rough fuzzy single pass algorithm for clustering large data sets. Pattern Recog. 36(12): 3015– 3018. 2004. CrossrefWeb of Science®Google Scholar S. Asharaf, S. K. Shevade, and N. M. Murty. Rough support vector clustering. Pattern Recog. 38(10): 1779– 1783. 2005. CrossrefWeb of Science®Google Scholar J. Atkinson-Abutridy, C. Mellish, and S. Aitken. Combining information extraction with genetic algorithms for text mining. IEEE Intelligent Systems 19(3): 22– 30. 2004. CrossrefWeb of Science®Google Scholar G. Attardi, A. Gullí, and F. Sebastiani. Automatic Web Page Categorization by Link and Context Analysis. In Proceedings of 1st European Symposium on Telematics, Hypermedia and Artificial Intelligence, pp. 105– 119. 1999. Google Scholar W. H. Au and K. C. C. Chan. An effective algorithm for discovering fuzzy rules in relational databases. In Proceedings of the 7th IEEE International Conference on Fuzzy Systems. Piscataway, NJ: IEEE Press, pp. 1314– 1319. 1998. Web of Science®Google Scholar T. Baeck. Evolutionary Algorithms in Theory and Practice. Oxford: Oxford University Press. 1996. Google Scholar A. A. Bakar, M. N. Sulaiman, M. Othman, and M. H. Selamat. Propositional satisfiability algorithm to find minimal reducts for data mining. Int. J. Comput. Math. 79(4): 379– 389. 2002. CrossrefWeb of Science®Google Scholar M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C. Langford. The isomap algorithm and topological stability. Science 295(5552): 7. 2002. CrossrefPubMedWeb of Science®Google Scholar J. F. Baldwin, J. Lawry, and T. P. Martin. A mass assignment based ID3 algorithm for decision tree induction. Int. J. Intell. Sys. 12(7): 523– 552. 1997. Wiley Online LibraryWeb of Science®Google Scholar J. K. Baltzersen. An attempt to predict stock market data: a rough sets approach. Diploma thesis. Knowledge Systems Group, Department of Computer Systems and Telematics, Norwegian Institute of Technology, University of Trondheim. 1996. Google Scholar P. Baranyi, T. D. Gedeon, and L. T. Kóczy. A general interpolation technique in fuzzy rule bases with arbitrary membership functions. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, NJ: IEEE Press, pp. 510– 515. 1996. Web of Science®Google Scholar P. Baranyi, D. Tikk, Y. Yam, and L. T. Kóczy. A new method for avoiding abnormal conclusion for α-cut based rule interpolation. In Proceedings of FUZZ-IEEE'99, Seoul, Korea. Piscataway, NJ: IEEE Press, pp. 383– 388. 1999. Google Scholar L. Bardossy and L. Duckstein. Fuzzy Rule-Based Modeling with Application to Geophysical, Biological and Engineering Systems. Roca Baton: CRC Press. 1995. Google Scholar R. Bayardo Jr. and R. Schrag. Using CSP look-back techniques to solve exceptionally hard SAT instances. In Proceedings of International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science, 1118, Springer-Verlag, pp. 46– 60. 1996. CrossrefGoogle Scholar J. Bazan. A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In Rough Sets in Knowledge Discovery. Heidelberg: Physica, pp. 321– 365. 1998. Google Scholar J. Bazan, A. Skowron, and P. Synak. Dynamic reducts as a tool for extracting laws from decision tables. In Z. W. Ras, M. Zemankova, eds., Proceedings of 8th Symposium on Methodologies for Intelligent Systems. Lecture Notes in Artificial Intelligence 869. Berlin: Springer, pp. 346– 355. 1994. CrossrefGoogle Scholar J. Bazan, A. Skowron, and P. Synak. Market data analysis: A rough set approach. ICSResearch Reports 6/94. Warsaw University of Technology. 1994. Google Scholar T. Beaubouef, F. E. Petry, and G. Arora. Information measures for rough and fuzzy sets and application to uncertainty in relational databases. In [258] 1999. Google Scholar R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton: Princeton University Press. 1961. CrossrefGoogle Scholar M. J. Beynon. An investigation of β-reduct selection within the variable precision rough sets model. In Proceedings of 2nd International Conference on Rough Sets and Current Trends in Computing (RSCTC 2000), Lecture Notes in Computer Science, 2005, Springer-Verlag, pp 114– 122. 2000. Google Scholar M. J. Beynon. Reducts within the variable precision rough sets model: A further investigation. Eur. J. Oper. Res. 134(3): 592– 605. 2001. CrossrefWeb of Science®Google Scholar M. J. Beynon. Stability of continuous value discretisation: An application within rough set theory. Int. J. Approx. Reason. 35: 29– 53. 2004. CrossrefWeb of Science®Google Scholar J. C. Bezdek, Fuzzy mathematics in pattern classification. PhD thesis. Center for Applied Mathematics, Cornell University. 1973. Google Scholar J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press. 1981. CrossrefGoogle Scholar R. B. Bhatt and M. Gopal. FRID: Fuzzy-rough interactive dichotomizers. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'04). Piscataway, NJ: IEEE Press, pp. 1337– 1342. 2004. Web of Science®Google Scholar R. B. Bhatt and M. Gopal. On fuzzy-rough sets approach to feature selection. Pattern Recog. Lett. 26(7): 965– 975. 2005. CrossrefWeb of Science®Google Scholar R. B. Bhatt and M. Gopal. On the compact computational domain of fuzzy-rough sets. Pattern Recog. Lett. 26(11): 1632– 1640. 2005. CrossrefWeb of Science®Google Scholar H. Bian and L. Mazlack. Fuzzy-rough nearest-neighbor classification approach. Proceeding of the 22nd International Conference of North American Fuzzy Information Processing Society. Piscataway, NJ: IEEE Press, pp. 500– 505. 2003. Web of Science®Google Scholar C. M. Bishop. Neural Networks for Pattern Recognition. Oxford: Oxford University Press. 1995. Google Scholar A. T. Bjorvand and J. Komorowski. Practical applications of genetic algorithms for efficient reduct computation. In Proceedings of 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 4, IMACS, Wissenschaft & Technik Verlag, pp. 601– 606. 1997. Google Scholar C. L. Blake and C. J. Merz. UCI Repository of machine learning databases. Irvine: University of California. 1998. Available at http://www.ics.uci.edu/˜mlearn/.1 Google Scholar D. Boixader, J. Jacas, and J. Recasens. Upper and lower approximations of fuzzy sets. Int. J. Gen. Sys. 29(4): 555– 568. 2000. CrossrefWeb of Science®Google Scholar E. Bonabeau, M. Dorigo, and G. Theraulez. Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press. 1999. CrossrefGoogle Scholar B. Bouchon-Meunier, C. Marsala, and M. Rifqi. Interpolative reasoning based on graduality. In Proceedings of FUZZ-IEEE'2000, San Antonio, TX. Piscataway, NJ: IEEE Press, pp. 483– 487. 2000. Web of Science®Google Scholar U. M. Braga-Neto and E. R. Dougherty. Is cross-validation valid for small-sample microarray classification? Bioinformatics 20(3): 374– 380. 2004. CrossrefCASPubMedWeb of Science®Google Scholar C. Bregler and S. M. Omoundro. Nonlinear image interpolation using manifold learning. In G. Tesauro, D. S. Touretzky, and T. K. Leen, eds., Advances in Neural Information Processing Systems 7, The MIT Press, pp. 973– 980. 1995. Google Scholar L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Monterey, CA: Wadsworth. 1984. Google Scholar M. A. Carreira-Perpinñán. Continuous latent variable models for dimensionality reduction and sequential data reconstruction. PhD thesis. University of Sheffield, UK. 2001. Google Scholar W. Cedeño and D. K. Agrafiotis. Using particle swarms for the development of QSAR models based on k-nearest neighbor and kernel regression. J. Comput. Aid. Mol. Des. 17: 255– 263. 2003. CrossrefCASPubMedWeb of Science®Google Scholar J. Cendrowska. PRISM: An algorithm for inducing modular rules. Int. J. Man-Machine Studies 27(4): 349– 370. 1987. CrossrefWeb of Science®Google Scholar S. Chakrabarti, B. Dom, P. Raghaven, S. Rajagopalan, D. Gibson, and J. Kleinberg. Automatic resource compilation by analyzing hyperlink structure and associated text. Proceedings of the 7th International World Wide Web Conference, Elsevier Science B.V., Amsterdam, pp. 65– 74. 1998. Web of Science®Google Scholar R. Chan. Protecting rivers and streams by monitoring chemical concentrations and algae communities. ERUDIT: 3rd International Competition of Data Analysis by Intelligent Techniques (runner up). 1999. Google Scholar K. Chan and A. Wong. APACS: A System for Automatic Analysis and Classification of Conceptual Patterns. Comput. Intell. 6(3): 119– 131. 1990. Wiley Online LibraryGoogle Scholar S. Chen, S. L. Lee, and C. Lee. A new method for generating fuzzy rules from numerical data for handling classification problems. Appl. Art. Intell. 15(7): 645– 664. 2001. CrossrefWeb of Science®Google Scholar W. C. Chen, N. B. Chang, and J. C. Chen. Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment. Water Res. 37(1): 95– 107. 2003. CrossrefCASPubMedWeb of Science®Google Scholar D. Chen, W. X. Zhang, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets. Infor. Sci. 176(13): 1829– 1848. 2006. CrossrefWeb of Science®Google Scholar A. Chouchoulas and Q. Shen. Rough set-aided keyword reduction for text categorisation. Appl. Art. Intell. 15 (9): 843– 873. 2001. CrossrefWeb of Science®Google Scholar S. Chimphlee, N. Salim, M. S. B. Ngadiman, W. Chimphlee, and S. Srinoy. Independent component analysis and rough fuzzy based approach to Web usage mining. In Proceedings of the Artificial Intelligence and Applications. ALTA Press, Anaheim, pp. 422– 427. 2006. Web of Science®Google Scholar A. Chouchoulas, J. Halliwell, and Q. Shen. On the implementation of rough set attribute reduction. Proceedings of 2002 UK Workshop on Computational Intelligence, pp. 18– 23. 2002. Google Scholar P. Clark and R. Boswell. Machine Learning—Proceedings of the Fifth European Conference (EWSL-91). Berlin: Springer, pp. 151– 163. 1991. Google Scholar P. Clark and T. Niblett. The CN2 induction algorithm. Mach. Learning J. 3(4): 261– 283. 1989. CrossrefGoogle Scholar W. W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings of the 12th International Conference, Morgan Kaufmann, pp. 115– 123. 1995. Google Scholar O. Cordón, M. J. del Jesus, and F. Herrera. Evolutionary approaches to the learning of fuzzy rule-based classification systems. In L. C. Jain, ed., Evolution of Enginnering and Information Systems and Their Applications. Roca Baton: CRC Press, pp. 107– 160. 1999. Google Scholar O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena. Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Systems 141: 5– 31. 2001. CrossrefWeb of Science®Google Scholar O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena. Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Singapore: World Scientific. 2001. CrossrefGoogle Scholar O. Cordón, M. J. del Jesus, F. Herrera, L. Magdalena, and P. Villar. A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems. In J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, eds., Interpretability Issues in Fuzzy Modeling. Berlin: Springer, pp. 79– 99. 2003. CrossrefGoogle Scholar C. Cornelis, M. De Cock, and A. Radzikowska. Vaguely quantified rough sets. Proceedings of 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Lecture Notes in Artificial Intelligence 4482. Berlin: Springer, pp. 87– 94. 2007. CrossrefGoogle Scholar C. Cornelis and R. Jensen. A noise-tolerant approach to fuzzy-rough feature selection. 17th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'08), submitted. Google Scholar E. Cox. The Fuzzy Systems Handbook: A Practitioner's Guide to Building, Using and Maintaining Fuzzy Systems. San Diego: Academic Press. 1999. Google Scholar M. Dash and H. Liu. Feature selection for classification. Intell. Data Anal. 1(3): 131– 156. 1997. CrossrefGoogle Scholar M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature selection for clustering—A filter solution. In Proceedings of IEEE International Conference on Data Mining (ICDM), Piscataway, NJ: IEEE Press, pp. 115– 122. 2002. Google Scholar M. Dash and H. Liu. Consistency-based search in feature selection. Art. Intell. 151(1–2): 155– 176. 2003. CrossrefWeb of Science®Google Scholar M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM 7(3): 201– 215. 1960. CrossrefWeb of Science®Google Scholar M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Comm. ACM 5: 394– 397. 1962. CrossrefWeb of Science®Google Scholar M. De Cock, C. Cornelis, and E.E. Kerre. Fuzzy rough sets: beyond the obvious. Proceedings of IEEE International Conference on Fuzzy Systems, Vol. 1. Piscataway, NJ: IEEE Press, pp. 103– 108, 2004. Web of Science®Google Scholar M. De Cock and C. Cornelis. Fuzzy rough set based Web query expansion. Proceedings of Rough Sets and Soft Computing in Intelligent Agent and Web Technology. International Workshop at WIIAT2005 (2005 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology), Piscataway, NJ: IEEE Press, pp. 9– 16, 2005. Google Scholar M. De Cock, C. Cornelis, and E. E. Kerre. Fuzzy rough sets: The forgotten step. IEEE Trans. Fuzzy Sys. 15(1): 121– 130. 2007. CrossrefWeb of Science®Google Scholar S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. J. Soc. Info. Sci. 41(6): 391– 407. 1990. Wiley Online LibraryGoogle Scholar P. Dempster. A generalization of Bayesian inference. J. Roy. Stat. Soc. B 30: 205– 247. 1968. Web of Science®Google Scholar P. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Englewood Cliffs, NJ: Prentice Hall. 1982. Google Scholar P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. An. Stat. 12: 793– 815. 1984. CrossrefWeb of Science®Google Scholar A. I. Dimitras, R. Slowinski, R. Susmaga, and C. Zopounidis. Business failure prediction using rough sets. Eur. J. Oper. Res. 114: 263– 280. 1999. CrossrefWeb of Science®Google Scholar A. I. Dimitras, S. H. Zanakis, and C. Zopounidis. A survey of business failure with an emphasis on prediction methods and industrial applications. Eur. J. Oper. Res. 90: 487– 513. 1996. CrossrefWeb of Science®Google Scholar J. Dong, N. Zhong, and S. Ohsuga. Using rough sets with heuristics for feature selection. In New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. 7th International Workshop (RSFDGrC 99), pp. 178– 187. 1999. CrossrefWeb of Science®Google Scholar M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Sys. Man Cyber. B 26(1): 29– 41. 1996. CrossrefCASGoogle Scholar G. Drwal and A. Mrózek. System RClass—software implementation of the rough classifier. In Proceedings of 7th International Symposium on Intelligent Information Systems, pp. 392– 395. 1998. Google Scholar G. Drwal. Rough and fuzzy-rough classification methods implemented in RClass system. In Proceedings of 2nd International Conference on Rough Sets and Current Trends in Computing. Lecture Notes in Computer Science, 2005, Springer-Verlag, pp 152– 159. 2000. Google Scholar D. Dubois and H. Prade. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Sys. 17: 191– 209. 1990. CrossrefWeb of Science®Google Scholar D. Dubois and H. Prade. Putting rough sets and fuzzy sets together. In [340], pp. 203– 232. 1992. Google Scholar S. T. Dumais. Combining evidence for effective information filtering. AAAI Spring Symposium on Machine Learning in Information access Technical Papers. 1996. Google Scholar J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cyber. 3(3): 32– 57. 1973. CrossrefGoogle Scholar I. Düntsch and G. Gediga. Rough set data analysis. In A. Kent and J. G. Williams, eds., Ency. Comput. Sci. Technol. 43 (28): 281– 301. 2000. Google Scholar I. Düntsch and G. Gediga. Rough Set Data Analysis: A road to Non-invasive Knowledge Discovery. Bangor: Methodos. 2000. Google Scholar S. Dzeroski, B. Cestnik, and I Petrovski. Using the m-estimate in rule induction. Journal of Computing and Information Technology, 1(1): 37– 46. 1993. Google Scholar A. L. Edwards, An Introduction to Linear Regression and Correlation. San Francisco: Freeman. 1976. Google Scholar T. Endou and Q. Zhao. Generation of comprehensible decision trees through evolution of training data. In Proceedings of the 2002 IEEE World Congress on Computational Intelligence. Piscataway, NJ: IEEE Press, pp. 1221– 1225. 2002. Web of Science®Google Scholar ERUDIT (European Network for Fuzzy Logic and Uncertainty Modeling in Information Technology). Protecting Rivers and Streams by Monitoring Chemical Concentrations and Algae Communities. 3rd International Competition. 1999. Google Scholar B. S. Everitt. An Introduction to Latent Variable Models. Monographs on Statistics and Applied Probability. London: Chapman Hall, 1984. CrossrefGoogle Scholar K. Farion, W. Michalowski, R. Slowinski, S. Wilk, and S. Rubin. S. Tsumoto et al., eds., Rough Set Methodology in Clinical Practice: Controlled Hospital Trial of the MET System. Springer-Verlag Heiddberg RSCTC, LNAI 3066, pp. 805– 814. 2004. Google Scholar U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in databases. Art. Intell., 17(3): 37– 54. 1996. Web of Science®Google Scholar L. Feng, J.-J. Qiu, and Y. J. Cao. Performance of the novel rough fuzzy-neural network on short-term load forecasting. In Proceedings of the Power Systems Conference and Exposition, IEEE Press pp. 543– 547. 2004. Google Scholar R. Fisher. The use of multiple measurementsin taxonomic problems. An. Eugen. 7: 179– 188. 1936. Wiley Online LibraryPubMedWeb of Science®Google Scholar B. Flury and H. Riedwyl. Multivariate Statistics: A Practical Approach. Englewood Cliffs, NJ: Prentice Hall. 1988. CrossrefGoogle Scholar D. B. Fogel. The advantages of evolutionary computation. In Proceedings of the Biocomputing and Emergent Computation Conference, World Scientific, pp. 1– 11. 1997. Web of Science®Google Scholar G. Forman. An Extensive Empirical Study of Feature Selection Metrics for Text Classification. J. Mach. Learning Res. 3: 1289– 1305. 2003. CrossrefGoogle Scholar J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. C 23(9): 881– 890. 1974. CrossrefWeb of Science®Google Scholar J. H. Friedman and W. Stuetzle. Projection pursuit regression. J. Am. Stat. Assoc. 76: 817– 823. 1981. CrossrefPubMedWeb of Science®Google Scholar J. H. Friedman. Multivariate Adaptive Regression Splines. An. Stat. 19(1): 1– 141. 1991. CrossrefWeb of Science®Google Scholar N. Fuhr. Probabilistic Models in Information Retrieval. Comput. J. 35(3): 243– 55. 1992. CrossrefWeb of Science®Google Scholar N. Fuhr, N. Gövert, M. Lalmas, and F. Sebastiani. Categorisation tool: Final prototype. Deliverable 4.3, Project LE4-8303 “EUROSEARCH,” Commission of the European Communities. 1999. Google Scholar M. Galea and Q. Shen. Fuzzy rules from ant-inspired computation. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vol.3, Piscataway, NJ: IEEE Press, pp. 1691– 1696. 2004. Web of Science®Google Scholar M. Galea and Q. Shen. Iterative vs simultaneous fuzzy rule induction. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vol. 4. Piscataway, NJ: IEEE Press, pp. 767– 772. 2005. Web of Science®Google Scholar M. Galea, Q. Shen and J. Levine. Evolutionary approaches to fuzzy modelling for classification. Knowledge Eng. Rev. 19(1): 27– 59. 2004. CrossrefWeb of Science®Google Scholar D. Gering. Linear and nonlinear data dimensionality reduction. Technical report. Massachusetts Institute of Technology. 2002. Google Scholar F. Ginter, T. Pahikkala, S. Pyysalo, J. Boberg, J. Järvinen and T. Salakoski. In S. Tsumoto et al., eds., Extracting Protein–Protein Interaction Sentences by Applying Rough Set Data Analysis. Springer Verlag, LNAI 3066, pp. 780– 785. 2004. Web of Science®Google Scholar J. Gleick. Chaos: Making New Science. Penguin Books. 1988. Google Scholar R. Golan. Stock market analysis utilizing rough set theory. PhD thesis. Department of Computer Science, University of Regina, Canada. 1995. CrossrefGoogle Scholar R. Golan and D. Edwards. Temporal rules discovery using datalogic/R+ with stock market data. In Proceedings of International Workshop on Rough Sets and Knowledge Discovery, Springer Verlag, pp. 74– 81. 1993. Google Scholar A. Gonzalez, R. Perez, and J. L. Verdegay. Learning the structure of a fuzzy rule: A genetic approach. Fuzzy Sys. Art. Intell. 3(1): 57– 70. 1994. Google Scholar S. Greco, M. Inuiguchi, and R. Slowinski. Fuzzy rough sets and multiple-premise gradual decision rules. Int. J. Approx. Reason. 41: 179– 211. 2005. CrossrefWeb of Science®Google Scholar S. Greco, M. Inuiguchi, and R. Slowinski. A new proposal for fuzzy rough aproximations and gradual decision rule representation. Transactions on Rough Sets II. Lecture Notes in Computer Science, Vol. 3135. Berlin Springer, pp. 319– 342. 2004. CrossrefWeb of Science®Google Scholar J.W. Grzymala-Busse. LERS—A system for learning from examples based on rough sets. In R. Slowinski, ed., Intelligent Decision Support. Dordrecht: Kluwer Academic, pp. 3– 18. 1992. CrossrefGoogle Scholar J. W. Grzymala-Busse. A comparison of three strategies to rule induction from data with numerical attributes. Proceedings of the International Workshop on Rough Sets in Knowledge Discovery. European Joint Conferences on Theory and Practice of Software. Elsevier, pp. 132– 140. 2003. Google Scholar J. W. Grzymala-Busse. Three strategies to rule induction from data with numerical attributes. Transactions on Rough Sets II, Berlin: Springer, pp. 54– 62. 2004. CrossrefWeb of Science®Google Scholar L. Han, J.F. Peters, S. Ramanna, and R. Zhai. Classifying faults in high voltage power systems: A rough-fuzzy neural computational approach. Proceedings of 7th International Workshop on Rough Sets, Data Mining, and Granular-Soft Computing, Springer-Verlag, pp. 47– 54. 1999. CrossrefGoogle Scholar J. Han, X. Hu, and T. Y. Lin. Feature subset selection based on relative dependency between attributes. Rough Sets and Current Trends in Computing: 4th International Conference, Uppsala, Sweden, June 1–5, pp. 176– 185. 2004. CrossrefGoogle Scholar H. Handels, T. Roß, J. Kreusch, H. H. Wolff, and S. Pöpple. Feature selection for optimized skin tumor recognition using genetic algorithms. Art. Intell. Med. 16(3): 283– 297. 1999. CrossrefCASPubMedWeb of Science®Google Scholar J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Appl. Stat. 28(1): 100– 108. 1979. Wiley Online LibraryGoogle Scholar I. Hayashi, T. Maeda, A. Bastian, and L.C. Jain. Generation of fuzzy decision trees by fuzzy ID3 with adjusting mechanism of AND/OR operators. In Proceedings of 7th IEEE International Conference on Fuzzy Systems. Piscataway, NJ: IEEE Press, pp. 681– 685. 1998. Google Scholar F. Herrera. Genetic fuzzy systems: Status, critical considerations and future directions. Int. J. Comput. Intell. Res. 1(1): 59– 67. 2005. CrossrefGoogle Scholar M. P. Hippe. In J. J. Alpigini et al., eds., Towards the Classification of Musical Works: A Rough Set Approach. LNAI 2475, Springer Verlag, pp. 546– 553. 2002. Web of Science®Google Scholar S. Hirano and S. Tsumoto. Rough clustering and its application to medicine. J. Info. Sci. 124: 125– 137, 2000. Google Scholar K. Hirota, ed. Industrial Applications of Fuzzy Technology. Tokyo: Springer. 1993. CrossrefGoogle Scholar T. B. Ho, S. Kawasaki, and N. B. Nguyen. Documents clustering using tolerance rough set model and its application to information retrieval. Studies In Fuzziness and Soft Computing, Intelligent Exploration of the Web, Physica-Verlag Heidelberg, pp. 181– 196. 2003. CrossrefGoogle Scholar U. Höhle. Quotients with respect to similarity relations. Fuzzy Sets Sys. 27(1): 31– 44. 1988. CrossrefWeb of Science®Google Scholar J. Holland. Adaptation In Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975. Google Scholar J. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. A. Waterman F. Hayes-Roth. Pattern-Directed Inference Systems. New York: Academic Press. p. 49. 1978. Web of Science®Google Scholar R. C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learn. 11(1): 63– 90. 1993. CrossrefWeb of Science®Google Scholar T. P. Hong, Y. L. Liou, and S. L. Wang. Learning with hierarchical quantitative attributes by fuzz" @default.
- W4251268258 created "2022-05-12" @default.
- W4251268258 date "2008-01-29" @default.
- W4251268258 modified "2023-10-14" @default.
- W4251268258 title "References" @default.
- W4251268258 cites W106457973 @default.
- W4251268258 cites W115463038 @default.
- W4251268258 cites W117293815 @default.
- W4251268258 cites W123511966 @default.
- W4251268258 cites W1480643874 @default.
- W4251268258 cites W1488244510 @default.
- W4251268258 cites W1493454437 @default.
- W4251268258 cites W1495325326 @default.
- W4251268258 cites W1508620301 @default.
- W4251268258 cites W1510685118 @default.
- W4251268258 cites W1516663780 @default.
- W4251268258 cites W1545377407 @default.
- W4251268258 cites W1551711366 @default.
- W4251268258 cites W1564785224 @default.
- W4251268258 cites W1578177779 @default.
- W4251268258 cites W1601938650 @default.
- W4251268258 cites W1605752135 @default.
- W4251268258 cites W1606022329 @default.
- W4251268258 cites W1607225427 @default.
- W4251268258 cites W1608549042 @default.
- W4251268258 cites W1632703477 @default.
- W4251268258 cites W1813219539 @default.
- W4251268258 cites W1850521444 @default.
- W4251268258 cites W1892848734 @default.
- W4251268258 cites W1903938543 @default.
- W4251268258 cites W1964432381 @default.
- W4251268258 cites W1965239040 @default.
- W4251268258 cites W1968104963 @default.
- W4251268258 cites W1971790955 @default.
- W4251268258 cites W1973186426 @default.
- W4251268258 cites W1975980892 @default.
- W4251268258 cites W1976034104 @default.
- W4251268258 cites W1976239553 @default.
- W4251268258 cites W1977556410 @default.
- W4251268258 cites W1978030759 @default.
- W4251268258 cites W1978515644 @default.
- W4251268258 cites W1979111932 @default.
- W4251268258 cites W1980080444 @default.
- W4251268258 cites W1987149779 @default.
- W4251268258 cites W1987703212 @default.
- W4251268258 cites W1987902506 @default.
- W4251268258 cites W1988907639 @default.
- W4251268258 cites W1990368529 @default.
- W4251268258 cites W1991473542 @default.
- W4251268258 cites W1992021188 @default.
- W4251268258 cites W1993436046 @default.
- W4251268258 cites W1996844420 @default.
- W4251268258 cites W1997362234 @default.
- W4251268258 cites W2000594950 @default.
- W4251268258 cites W2001141328 @default.
- W4251268258 cites W2001179019 @default.
- W4251268258 cites W2001619934 @default.
- W4251268258 cites W2002680690 @default.
- W4251268258 cites W2003408954 @default.
- W4251268258 cites W2005262207 @default.
- W4251268258 cites W2006924244 @default.
- W4251268258 cites W2010695224 @default.
- W4251268258 cites W2013198395 @default.
- W4251268258 cites W2014827534 @default.
- W4251268258 cites W2015367870 @default.
- W4251268258 cites W2015487637 @default.
- W4251268258 cites W2015870870 @default.
- W4251268258 cites W2020538533 @default.
- W4251268258 cites W2021680742 @default.
- W4251268258 cites W2024060531 @default.
- W4251268258 cites W2024425422 @default.
- W4251268258 cites W2025174946 @default.
- W4251268258 cites W2026122471 @default.
- W4251268258 cites W2026501592 @default.
- W4251268258 cites W2026535637 @default.
- W4251268258 cites W2026577953 @default.
- W4251268258 cites W2027654459 @default.
- W4251268258 cites W2029332440 @default.
- W4251268258 cites W2031648200 @default.
- W4251268258 cites W2033099886 @default.
- W4251268258 cites W2033702592 @default.
- W4251268258 cites W2033735274 @default.
- W4251268258 cites W2034237724 @default.
- W4251268258 cites W2036135215 @default.
- W4251268258 cites W2038770572 @default.
- W4251268258 cites W2039001632 @default.
- W4251268258 cites W2045814707 @default.
- W4251268258 cites W2050272285 @default.
- W4251268258 cites W2050288270 @default.
- W4251268258 cites W2053186076 @default.
- W4251268258 cites W2054339168 @default.
- W4251268258 cites W2057361103 @default.
- W4251268258 cites W2060066124 @default.
- W4251268258 cites W2060158535 @default.
- W4251268258 cites W2060614470 @default.
- W4251268258 cites W2060981570 @default.
- W4251268258 cites W2062301117 @default.
- W4251268258 cites W2062897452 @default.