Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251509274> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4251509274 endingPage "102" @default.
- W4251509274 startingPage "92" @default.
- W4251509274 abstract "The problem of computing the Hilbert basis of a linear Diophantine system over nonnegative integers is often considered in automated deduction and integer programming. In automated deduction, the Hilbert basis of a corresponding system serves to compute the minimal complete set of associative-commutative unifiers, whereas in integer programming the Hilbert bases are tightly connected to integer polyhedra and to the notion of total dual integrality. In this paper, we sharpen the previously known result that the problem, asking whether a given solution belongs to the Hilbert basis of a given system, is coNP-complete. We show that the problem has a pseudopolynomial algorithm if the number of equations in the system is fixed, but it is coNP-complete in the strong sense if the given system is unbounded. This result is important in the scope of automated deduction, where the input is given in unary and therefore the previously known coNP-completeness result was unusable. Moreover, we prove that, given a linear Diophantine system and a set of solutions, asking whether this set constitutes the Hilbert basis of the system, is also coNP-complete in the strong sense, answering this way an open problem formulated by Henk and Weismantel in 1996. Our result also allows us to solve another open problem, formulated by Edmonds and Giles in 1982, where we prove that asking whether a given set of vectors constitutes the Hilbert basis of an unknown linear Diophantine system, is coNP-complete in the strong sense." @default.
- W4251509274 created "2022-05-12" @default.
- W4251509274 creator A5008850227 @default.
- W4251509274 creator A5059509786 @default.
- W4251509274 creator A5074896214 @default.
- W4251509274 date "1999-01-01" @default.
- W4251509274 modified "2023-09-30" @default.
- W4251509274 title "On the Complexity of Recognizing the Hilbert Basis of a Linear Diophantine System" @default.
- W4251509274 cites W1652781893 @default.
- W4251509274 cites W1977818404 @default.
- W4251509274 cites W1991466985 @default.
- W4251509274 cites W2011618311 @default.
- W4251509274 cites W2016416448 @default.
- W4251509274 cites W2032980094 @default.
- W4251509274 cites W2033288425 @default.
- W4251509274 cites W2062908445 @default.
- W4251509274 cites W2103658959 @default.
- W4251509274 cites W3140292214 @default.
- W4251509274 doi "https://doi.org/10.1007/3-540-48340-3_9" @default.
- W4251509274 hasPublicationYear "1999" @default.
- W4251509274 type Work @default.
- W4251509274 citedByCount "2" @default.
- W4251509274 crossrefType "book-chapter" @default.
- W4251509274 hasAuthorship W4251509274A5008850227 @default.
- W4251509274 hasAuthorship W4251509274A5059509786 @default.
- W4251509274 hasAuthorship W4251509274A5074896214 @default.
- W4251509274 hasConcept C118615104 @default.
- W4251509274 hasConcept C12426560 @default.
- W4251509274 hasConcept C136119220 @default.
- W4251509274 hasConcept C183778304 @default.
- W4251509274 hasConcept C199360897 @default.
- W4251509274 hasConcept C202444582 @default.
- W4251509274 hasConcept C206530611 @default.
- W4251509274 hasConcept C2524010 @default.
- W4251509274 hasConcept C33923547 @default.
- W4251509274 hasConcept C41008148 @default.
- W4251509274 hasConcept C62799726 @default.
- W4251509274 hasConcept C78023250 @default.
- W4251509274 hasConcept C97137487 @default.
- W4251509274 hasConceptScore W4251509274C118615104 @default.
- W4251509274 hasConceptScore W4251509274C12426560 @default.
- W4251509274 hasConceptScore W4251509274C136119220 @default.
- W4251509274 hasConceptScore W4251509274C183778304 @default.
- W4251509274 hasConceptScore W4251509274C199360897 @default.
- W4251509274 hasConceptScore W4251509274C202444582 @default.
- W4251509274 hasConceptScore W4251509274C206530611 @default.
- W4251509274 hasConceptScore W4251509274C2524010 @default.
- W4251509274 hasConceptScore W4251509274C33923547 @default.
- W4251509274 hasConceptScore W4251509274C41008148 @default.
- W4251509274 hasConceptScore W4251509274C62799726 @default.
- W4251509274 hasConceptScore W4251509274C78023250 @default.
- W4251509274 hasConceptScore W4251509274C97137487 @default.
- W4251509274 hasLocation W42515092741 @default.
- W4251509274 hasOpenAccess W4251509274 @default.
- W4251509274 hasPrimaryLocation W42515092741 @default.
- W4251509274 hasRelatedWork W1651871864 @default.
- W4251509274 hasRelatedWork W1984486938 @default.
- W4251509274 hasRelatedWork W2050191224 @default.
- W4251509274 hasRelatedWork W2053402117 @default.
- W4251509274 hasRelatedWork W2061854932 @default.
- W4251509274 hasRelatedWork W2245813304 @default.
- W4251509274 hasRelatedWork W2325635326 @default.
- W4251509274 hasRelatedWork W2792126174 @default.
- W4251509274 hasRelatedWork W3135745187 @default.
- W4251509274 hasRelatedWork W2505077532 @default.
- W4251509274 isParatext "false" @default.
- W4251509274 isRetracted "false" @default.
- W4251509274 workType "book-chapter" @default.