Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251569152> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4251569152 abstract "Accurate prediction of NMR chemical shifts with affordable computational cost is of great importance for rigorous structural assignments of experimental studies. However, the most popular computational schemes for NMR calculation—based on density functional theory (DFT) and gauge-including atomic orbital (GIAO) methods—still suffer from ambiguities in structural assignments. Using state-of-the-art machine learning (ML) techniques, we have developed a DFT+ML model that is capable of predicting 13C/1H NMR chemical shifts of organic molecules with high accuracy. The input for this generalizable DFT+ML model contains two critical parts: one is a vector providing insights into chemical environments, which can be evaluated without knowing the exact geometry of the molecule; the other one is the DFT-calculated isotropic shielding constant. The DFT+ML model was trained with a dataset containing 476 13C and 270 1H experimental chemical shifts. For the DFT methods used here, the root-mean-square-derivations (RMSDs) for the errors between predicted and experimental 13C/1H chemical shifts are as small as 2.10/0.18 ppm, which is much lower than the typical DFT (5.54/0.25 ppm), or DFT+linear regression (4.77/0.23 ppm) approaches. It also has smaller RMSDs and maximum absolute errors than two previously reported NMR-predicting ML models. We test the robustness of the model on two classes of organic molecules (TIC10 and hyacinthacines), where we unambiguously assigned the correct isomers to the experimental ones. This DFT+ML model is a promising way of predicting NMR chemical shifts and can be easily adapted to calculated shifts for any chemical compound.<br>" @default.
- W4251569152 created "2022-05-12" @default.
- W4251569152 creator A5016472927 @default.
- W4251569152 creator A5026472984 @default.
- W4251569152 creator A5059628106 @default.
- W4251569152 creator A5075443983 @default.
- W4251569152 date "2019-12-10" @default.
- W4251569152 modified "2023-09-24" @default.
- W4251569152 title "A General Protocol for the Accurate Predictions of Molecular 13C/1H NMR Chemical Shifts via Machine Learning" @default.
- W4251569152 doi "https://doi.org/10.26434/chemrxiv.11302295" @default.
- W4251569152 hasPublicationYear "2019" @default.
- W4251569152 type Work @default.
- W4251569152 citedByCount "0" @default.
- W4251569152 crossrefType "posted-content" @default.
- W4251569152 hasAuthorship W4251569152A5016472927 @default.
- W4251569152 hasAuthorship W4251569152A5026472984 @default.
- W4251569152 hasAuthorship W4251569152A5059628106 @default.
- W4251569152 hasAuthorship W4251569152A5075443983 @default.
- W4251569152 hasBestOaLocation W42515691521 @default.
- W4251569152 hasConcept C104317684 @default.
- W4251569152 hasConcept C111429119 @default.
- W4251569152 hasConcept C119857082 @default.
- W4251569152 hasConcept C121332964 @default.
- W4251569152 hasConcept C147597530 @default.
- W4251569152 hasConcept C147789679 @default.
- W4251569152 hasConcept C152365726 @default.
- W4251569152 hasConcept C163111631 @default.
- W4251569152 hasConcept C178790620 @default.
- W4251569152 hasConcept C184050105 @default.
- W4251569152 hasConcept C185592680 @default.
- W4251569152 hasConcept C32909587 @default.
- W4251569152 hasConcept C41008148 @default.
- W4251569152 hasConcept C55493867 @default.
- W4251569152 hasConcept C62520636 @default.
- W4251569152 hasConcept C63479239 @default.
- W4251569152 hasConcept C71240020 @default.
- W4251569152 hasConceptScore W4251569152C104317684 @default.
- W4251569152 hasConceptScore W4251569152C111429119 @default.
- W4251569152 hasConceptScore W4251569152C119857082 @default.
- W4251569152 hasConceptScore W4251569152C121332964 @default.
- W4251569152 hasConceptScore W4251569152C147597530 @default.
- W4251569152 hasConceptScore W4251569152C147789679 @default.
- W4251569152 hasConceptScore W4251569152C152365726 @default.
- W4251569152 hasConceptScore W4251569152C163111631 @default.
- W4251569152 hasConceptScore W4251569152C178790620 @default.
- W4251569152 hasConceptScore W4251569152C184050105 @default.
- W4251569152 hasConceptScore W4251569152C185592680 @default.
- W4251569152 hasConceptScore W4251569152C32909587 @default.
- W4251569152 hasConceptScore W4251569152C41008148 @default.
- W4251569152 hasConceptScore W4251569152C55493867 @default.
- W4251569152 hasConceptScore W4251569152C62520636 @default.
- W4251569152 hasConceptScore W4251569152C63479239 @default.
- W4251569152 hasConceptScore W4251569152C71240020 @default.
- W4251569152 hasLocation W42515691521 @default.
- W4251569152 hasOpenAccess W4251569152 @default.
- W4251569152 hasPrimaryLocation W42515691521 @default.
- W4251569152 hasRelatedWork W10162337 @default.
- W4251569152 hasRelatedWork W3743864 @default.
- W4251569152 hasRelatedWork W3834282 @default.
- W4251569152 hasRelatedWork W4409073 @default.
- W4251569152 hasRelatedWork W5169066 @default.
- W4251569152 hasRelatedWork W5338868 @default.
- W4251569152 hasRelatedWork W6083089 @default.
- W4251569152 hasRelatedWork W8193656 @default.
- W4251569152 hasRelatedWork W8308950 @default.
- W4251569152 hasRelatedWork W9962938 @default.
- W4251569152 isParatext "false" @default.
- W4251569152 isRetracted "false" @default.
- W4251569152 workType "article" @default.