Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251576161> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4251576161 endingPage "56" @default.
- W4251576161 startingPage "50" @default.
- W4251576161 abstract "As one of supervised learning algorithms, extreme learning machine (ELM) has been proposed for training single-hidden-layer feedforward neural networks and shown great generalization performance. ELM randomly assigns the weights and biases between input and hidden layers and only learns the weights between hidden and output layers. Physiological research has shown that neurons at the same layer are laterally inhibited to each other such that outputs of each layer are sparse. However, it is difficult for ELM to accommodate the lateral inhibition by directly using random feature mapping. Therefore, this paper proposes a sparse coding ELM (ScELM) algorithm, which can map the input feature vector into a sparse representation. In this proposed ScELM algorithm, an unsupervised way is used for sparse coding and dictionary is randomly assigned rather than learned. Gradient projection based method is used for the sparse coding. The output weights are trained through the same supervised way as ELM. Experimental results on the benchmark datasets have shown that this proposed ScELM algorithm can outperform other state-of-the-art methods in terms of classification accuracy." @default.
- W4251576161 created "2022-05-12" @default.
- W4251576161 creator A5052969553 @default.
- W4251576161 creator A5053193108 @default.
- W4251576161 date "2017-10-01" @default.
- W4251576161 modified "2023-10-16" @default.
- W4251576161 title "Sparse coding extreme learning machine for classification" @default.
- W4251576161 cites W2017369124 @default.
- W4251576161 cites W2026131661 @default.
- W4251576161 cites W2071709160 @default.
- W4251576161 cites W2072412055 @default.
- W4251576161 cites W2078204800 @default.
- W4251576161 cites W2099579348 @default.
- W4251576161 cites W2100495367 @default.
- W4251576161 cites W2103212315 @default.
- W4251576161 cites W2105464873 @default.
- W4251576161 cites W2109449402 @default.
- W4251576161 cites W2110505738 @default.
- W4251576161 cites W2111072639 @default.
- W4251576161 cites W2112796928 @default.
- W4251576161 cites W2115706991 @default.
- W4251576161 cites W2116148865 @default.
- W4251576161 cites W2129812935 @default.
- W4251576161 cites W2139795045 @default.
- W4251576161 cites W2141695047 @default.
- W4251576161 cites W2151693816 @default.
- W4251576161 cites W2157595416 @default.
- W4251576161 cites W2157969180 @default.
- W4251576161 cites W2263753685 @default.
- W4251576161 cites W3022380717 @default.
- W4251576161 cites W4239510810 @default.
- W4251576161 doi "https://doi.org/10.1016/j.neucom.2016.06.078" @default.
- W4251576161 hasPublicationYear "2017" @default.
- W4251576161 type Work @default.
- W4251576161 citedByCount "37" @default.
- W4251576161 countsByYear W42515761612018 @default.
- W4251576161 countsByYear W42515761612019 @default.
- W4251576161 countsByYear W42515761612020 @default.
- W4251576161 countsByYear W42515761612021 @default.
- W4251576161 countsByYear W42515761612022 @default.
- W4251576161 crossrefType "journal-article" @default.
- W4251576161 hasAuthorship W4251576161A5052969553 @default.
- W4251576161 hasAuthorship W4251576161A5053193108 @default.
- W4251576161 hasConcept C105795698 @default.
- W4251576161 hasConcept C119857082 @default.
- W4251576161 hasConcept C124066611 @default.
- W4251576161 hasConcept C13280743 @default.
- W4251576161 hasConcept C134306372 @default.
- W4251576161 hasConcept C153180895 @default.
- W4251576161 hasConcept C154945302 @default.
- W4251576161 hasConcept C177148314 @default.
- W4251576161 hasConcept C179518139 @default.
- W4251576161 hasConcept C185798385 @default.
- W4251576161 hasConcept C205649164 @default.
- W4251576161 hasConcept C2777036070 @default.
- W4251576161 hasConcept C2780150128 @default.
- W4251576161 hasConcept C33923547 @default.
- W4251576161 hasConcept C41008148 @default.
- W4251576161 hasConcept C50644808 @default.
- W4251576161 hasConcept C77637269 @default.
- W4251576161 hasConceptScore W4251576161C105795698 @default.
- W4251576161 hasConceptScore W4251576161C119857082 @default.
- W4251576161 hasConceptScore W4251576161C124066611 @default.
- W4251576161 hasConceptScore W4251576161C13280743 @default.
- W4251576161 hasConceptScore W4251576161C134306372 @default.
- W4251576161 hasConceptScore W4251576161C153180895 @default.
- W4251576161 hasConceptScore W4251576161C154945302 @default.
- W4251576161 hasConceptScore W4251576161C177148314 @default.
- W4251576161 hasConceptScore W4251576161C179518139 @default.
- W4251576161 hasConceptScore W4251576161C185798385 @default.
- W4251576161 hasConceptScore W4251576161C205649164 @default.
- W4251576161 hasConceptScore W4251576161C2777036070 @default.
- W4251576161 hasConceptScore W4251576161C2780150128 @default.
- W4251576161 hasConceptScore W4251576161C33923547 @default.
- W4251576161 hasConceptScore W4251576161C41008148 @default.
- W4251576161 hasConceptScore W4251576161C50644808 @default.
- W4251576161 hasConceptScore W4251576161C77637269 @default.
- W4251576161 hasFunder F4320321001 @default.
- W4251576161 hasLocation W42515761611 @default.
- W4251576161 hasOpenAccess W4251576161 @default.
- W4251576161 hasPrimaryLocation W42515761611 @default.
- W4251576161 hasRelatedWork W1525510058 @default.
- W4251576161 hasRelatedWork W2009766461 @default.
- W4251576161 hasRelatedWork W2057301118 @default.
- W4251576161 hasRelatedWork W2157785665 @default.
- W4251576161 hasRelatedWork W2386183059 @default.
- W4251576161 hasRelatedWork W2785806594 @default.
- W4251576161 hasRelatedWork W2990531703 @default.
- W4251576161 hasRelatedWork W3185179407 @default.
- W4251576161 hasRelatedWork W322817192 @default.
- W4251576161 hasRelatedWork W4251576161 @default.
- W4251576161 hasVolume "261" @default.
- W4251576161 isParatext "false" @default.
- W4251576161 isRetracted "false" @default.
- W4251576161 workType "article" @default.