Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251651851> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W4251651851 endingPage "193" @default.
- W4251651851 startingPage "193" @default.
- W4251651851 abstract "Conditions are found which allow one to define an absolute version of the Kervaire invariant in ${Z_2}$ of a ${text {Wu - }}(q + 1)$ oriented 2q-manifold. The condition is given in terms of a new invariant called the spectral cobordism invariant. Calculations are then made for the Kervaire invariant of the n-fold disjoint union of a manifold M with itself, which are then applied with $M = {P^{2q}}$, the real protective space. These give examples where the Kervaire invariant is not defined, and other examples where it has value $1 in {{mathbf {Z}}_2}$. These results are then applied to construct examples of smooth fixed point free involutions of homotopy spheres of dimension $4k + 1$ with nonzero desuspension obstruction, of which some Brieskorn spheres are examples (results obtained also by Berstein and Giffen). The spectral cobordism invariant is also applied directly to these examples to give another proof of a result of Atiyah-Bott. The question of which values can be realized as the sequence of Kervaire invariants of characteristic submanifolds of a smooth homotopy real projective space is discussed with some examples. Finally a condition is given which yields smooth embeddings of homotopy ${P^m}$âs in ${R^{m + k}}$ (which has been applied by E. Rees)." @default.
- W4251651851 created "2022-05-12" @default.
- W4251651851 creator A5071763471 @default.
- W4251651851 date "1973-04-01" @default.
- W4251651851 modified "2023-09-25" @default.
- W4251651851 title "Cobordism Invariants, the Kervaire Invariant and Fixed Point Free Involutions" @default.
- W4251651851 doi "https://doi.org/10.2307/1996697" @default.
- W4251651851 hasPublicationYear "1973" @default.
- W4251651851 type Work @default.
- W4251651851 citedByCount "0" @default.
- W4251651851 crossrefType "journal-article" @default.
- W4251651851 hasAuthorship W4251651851A5071763471 @default.
- W4251651851 hasBestOaLocation W42516518511 @default.
- W4251651851 hasConcept C134306372 @default.
- W4251651851 hasConcept C190470478 @default.
- W4251651851 hasConcept C202444582 @default.
- W4251651851 hasConcept C33923547 @default.
- W4251651851 hasConcept C37914503 @default.
- W4251651851 hasConcept C56213913 @default.
- W4251651851 hasConcept C5961521 @default.
- W4251651851 hasConcept C61445026 @default.
- W4251651851 hasConceptScore W4251651851C134306372 @default.
- W4251651851 hasConceptScore W4251651851C190470478 @default.
- W4251651851 hasConceptScore W4251651851C202444582 @default.
- W4251651851 hasConceptScore W4251651851C33923547 @default.
- W4251651851 hasConceptScore W4251651851C37914503 @default.
- W4251651851 hasConceptScore W4251651851C56213913 @default.
- W4251651851 hasConceptScore W4251651851C5961521 @default.
- W4251651851 hasConceptScore W4251651851C61445026 @default.
- W4251651851 hasLocation W42516518511 @default.
- W4251651851 hasOpenAccess W4251651851 @default.
- W4251651851 hasPrimaryLocation W42516518511 @default.
- W4251651851 hasRelatedWork W1488824746 @default.
- W4251651851 hasRelatedWork W1896972375 @default.
- W4251651851 hasRelatedWork W1981909949 @default.
- W4251651851 hasRelatedWork W2003961621 @default.
- W4251651851 hasRelatedWork W2004067396 @default.
- W4251651851 hasRelatedWork W2058033529 @default.
- W4251651851 hasRelatedWork W2070960044 @default.
- W4251651851 hasRelatedWork W2793321405 @default.
- W4251651851 hasRelatedWork W4236910366 @default.
- W4251651851 hasRelatedWork W4298245064 @default.
- W4251651851 hasVolume "178" @default.
- W4251651851 isParatext "false" @default.
- W4251651851 isRetracted "false" @default.
- W4251651851 workType "article" @default.