Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251657233> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4251657233 abstract "This paper investigate a new band selection approach with the Bhattacharyya distance based on the Gaussian Mixture model (GMM) for Hyperspectral image classification. Our main motivation to model the Bhattacharyya distance using GMM is due to the fact that this tool is well known for capturing non-Gaussian statistic of multivariate data and that is less sensitive to estimation error problem than purely non parametric models. To estimate the parameters of GMM, a Robust Expectation-Maximization (REM) algorithm is used. REM solves the shortcoming of the classical Expectation-Maximization (EM) algorithm by dynamically adapting the number of clusters to the data structure. The selected bands with the proposed approach are compared, in terms of classification accuracy, to the Bhattacharyya expressed in its parametric form and the Bhattacharyya modelled with GMM using the classical EM algorithm. The experiment were carried out on two real hyperspectral images, the Indiana Pines (92AV3C) sub-scene and the Kennedy Space Center (KSC) dataset, and the experimental results have demonstrated the effectiveness of our proposed method in terms of classification accuracy with fewer bands." @default.
- W4251657233 created "2022-05-12" @default.
- W4251657233 creator A5026174108 @default.
- W4251657233 creator A5062724726 @default.
- W4251657233 creator A5089704230 @default.
- W4251657233 date "2017-11-01" @default.
- W4251657233 modified "2023-09-25" @default.
- W4251657233 title "Band selection with the bhattacharyya distance based on the Gaussian mixture model for hyperspectral image classification" @default.
- W4251657233 cites W1999567234 @default.
- W4251657233 cites W2039609561 @default.
- W4251657233 cites W2046472904 @default.
- W4251657233 cites W2056749682 @default.
- W4251657233 cites W2078467191 @default.
- W4251657233 cites W2111072639 @default.
- W4251657233 cites W2119897980 @default.
- W4251657233 cites W2130381972 @default.
- W4251657233 cites W2134603844 @default.
- W4251657233 cites W2152842394 @default.
- W4251657233 cites W2154972179 @default.
- W4251657233 cites W2160633256 @default.
- W4251657233 cites W2168680562 @default.
- W4251657233 cites W2292979300 @default.
- W4251657233 cites W2303501228 @default.
- W4251657233 cites W4299677235 @default.
- W4251657233 cites W59495185 @default.
- W4251657233 doi "https://doi.org/10.1109/eitech.2017.8255282" @default.
- W4251657233 hasPublicationYear "2017" @default.
- W4251657233 type Work @default.
- W4251657233 citedByCount "1" @default.
- W4251657233 countsByYear W42516572332019 @default.
- W4251657233 crossrefType "proceedings-article" @default.
- W4251657233 hasAuthorship W4251657233A5026174108 @default.
- W4251657233 hasAuthorship W4251657233A5062724726 @default.
- W4251657233 hasAuthorship W4251657233A5089704230 @default.
- W4251657233 hasConcept C105795698 @default.
- W4251657233 hasConcept C117251300 @default.
- W4251657233 hasConcept C121332964 @default.
- W4251657233 hasConcept C126255220 @default.
- W4251657233 hasConcept C153180895 @default.
- W4251657233 hasConcept C154945302 @default.
- W4251657233 hasConcept C159078339 @default.
- W4251657233 hasConcept C163716315 @default.
- W4251657233 hasConcept C182081679 @default.
- W4251657233 hasConcept C24145651 @default.
- W4251657233 hasConcept C2776330181 @default.
- W4251657233 hasConcept C33923547 @default.
- W4251657233 hasConcept C41008148 @default.
- W4251657233 hasConcept C49781872 @default.
- W4251657233 hasConcept C61224824 @default.
- W4251657233 hasConcept C61326573 @default.
- W4251657233 hasConcept C62520636 @default.
- W4251657233 hasConceptScore W4251657233C105795698 @default.
- W4251657233 hasConceptScore W4251657233C117251300 @default.
- W4251657233 hasConceptScore W4251657233C121332964 @default.
- W4251657233 hasConceptScore W4251657233C126255220 @default.
- W4251657233 hasConceptScore W4251657233C153180895 @default.
- W4251657233 hasConceptScore W4251657233C154945302 @default.
- W4251657233 hasConceptScore W4251657233C159078339 @default.
- W4251657233 hasConceptScore W4251657233C163716315 @default.
- W4251657233 hasConceptScore W4251657233C182081679 @default.
- W4251657233 hasConceptScore W4251657233C24145651 @default.
- W4251657233 hasConceptScore W4251657233C2776330181 @default.
- W4251657233 hasConceptScore W4251657233C33923547 @default.
- W4251657233 hasConceptScore W4251657233C41008148 @default.
- W4251657233 hasConceptScore W4251657233C49781872 @default.
- W4251657233 hasConceptScore W4251657233C61224824 @default.
- W4251657233 hasConceptScore W4251657233C61326573 @default.
- W4251657233 hasConceptScore W4251657233C62520636 @default.
- W4251657233 hasLocation W42516572331 @default.
- W4251657233 hasOpenAccess W4251657233 @default.
- W4251657233 hasPrimaryLocation W42516572331 @default.
- W4251657233 hasRelatedWork W2028628118 @default.
- W4251657233 hasRelatedWork W2108035768 @default.
- W4251657233 hasRelatedWork W2133504961 @default.
- W4251657233 hasRelatedWork W2145268945 @default.
- W4251657233 hasRelatedWork W2167260052 @default.
- W4251657233 hasRelatedWork W2368486525 @default.
- W4251657233 hasRelatedWork W2587925928 @default.
- W4251657233 hasRelatedWork W2660824527 @default.
- W4251657233 hasRelatedWork W2769344286 @default.
- W4251657233 hasRelatedWork W3173596272 @default.
- W4251657233 isParatext "false" @default.
- W4251657233 isRetracted "false" @default.
- W4251657233 workType "article" @default.