Matches in SemOpenAlex for { <https://semopenalex.org/work/W4251997769> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4251997769 endingPage "458" @default.
- W4251997769 startingPage "455" @default.
- W4251997769 abstract "Free Access References Mark J. Nigrini B.Com.(Hons), MBA, Ph.D., Mark J. Nigrini B.Com.(Hons), MBA, Ph.D.Search for more papers by this author Book Author(s):Mark J. Nigrini B.Com.(Hons), MBA, Ph.D., Mark J. Nigrini B.Com.(Hons), MBA, Ph.D.Search for more papers by this author First published: 23 May 2011 https://doi.org/10.1002/9781118386798.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Acker, K., Moller, D., Marquardt, W., Bruggemann, E., Wieprecht, W., Auel, R., & Kalas, D. (1998). Atmospheric research program for studying changing emission patterns after German unification. Atmospheric Environment, 32 (20), 3435– 3443. Adhikari, A. (1969). Some results on the distribution of the most significant digit. Indian Journal of Statistics, Sankhya Series B, 31, 413– 420. Adhikari, A., & Sarkar, B. 1968. Distribution of most significant digit in certain functions whose arguments are random variables. Indian Jnl. of Statistics, Sankhya Series B, 30, 47– 58. Alexander, J. (2009). Remarks on the use of Benford's Law. Working paper, Case Western Reserve University, Department of Mathematics and Cognitive Science. American Institute of Certified Public Accountants. (1988). Statement on Auditing Standards No. 56, Analytical Procedures. New York, NY: Author. American Institute of Certified Public Accountants. (2002). Statement on Auditing Standards No. 99, Consideration of Fraud in a Financial Statement Audit. New York, NY: Author. American Institute of Certified Public Accountants. (2006). Statement on Auditing Standards No. 106, Audit Evidence. New York, NY. Association of Certified Fraud Examiners, American Institute of Certified Public Accountants, and The Institute of Internal Auditors. (2008). Managing the Business Risk of Fraud: A Practical Guide. Altamonte Springs, FL: Author. Becker, P. (1982). Patterns in listing of failure-rate and MTTF values and listings of other data. IEEE Transactions On Reliability R-31, 2 (June), 132– 134. Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, 78, 551– 572. Bolton, R., & Hand, D. (2002). Statistical fraud detection: A review. Statistical Science, 17 (3), 235– 255. Boyle, J. (1994). An application of Fourier Series to the most significant digit problem. The American Mathematical Monthly, 101 (9): 879– 886. Brady, W. (1978). More on Benford's Law. Fibonacci Quarterly, 16, 51– 52. Buck, B., Merchant, A., & Perez, S. (1993). An illustration of Benford's first digit law using alpha decay half lives. European Journal of Physics, 14, 59– 63. Burke, J., & Kincanon, E. (1991). Benford's Law and physical constants: The distribution of initial digits. American Journal of Physics, 59(October), 952. Busta, B., & Weinberg, R. (1998). Using Benford's Law and neural networks as a review procedure. Managerial Auditing Journal, 13 (6), 356– 366. Carslaw, C. (1988). Anomalies in income numbers: Evidence of goal oriented behavior. The Accounting Review, 63 (April), 321– 327. Christian, C., & Gupta, S. (1993). New evidence on “secondary evasion.” Journal of the American Taxation Association, 15 (1), 72– 92. Cleary, R., & Thibodeau, J. (2005). Applying digital analysis using Benford's Law to detect fraud: The dangers of type I errors. Auditing: A Journal of Practice and Theory, 24 (1), 77– 81. Craig, T. (1992). Round-off bias in earnings per share calculations. Journal of Applied Business Research, 8, 106– 113. Das, S., & Zhang, H. (2003). Rounding-up in reported EPS, behavioral thresholds, and earnings management. Journal of Accounting and Economics, 35 (1), 31– 50. Daugherty, B., & Pitman, M. (2009). Auditing the auditors: A case on PCAOB inspection reports of registered public accounting firms. Current Issues in Auditing, 3 (1), B1– B18. Dettinger, M., & Diaz, H. (2000). Global characteristics of stream flow seasonality and variability. Journal of Hydrometeorology, 1 (4), 289– 310. Drake, P., & Nigrini, M. (2000). Computer assisted analytical procedures using Benford's Law. Journal of Accounting Education, 18, 127– 146. Ettredge, M., & Srivastava, R. (1999). Using digital analysis to enhance data integrity. Issues in Accounting Education, 14 (4), 675– 690. Feller, W. (1966). An introduction to probability theory and its applications. New York, NY: John Wiley & Sons. Flehinger, B. (1966). On the probability that a random integer has initial digit “A.” The American Mathematical Monthly, 73 (10), 1056– 1061. Fleiss, J. (1981). Statistical methods for rates and proportions. New York, NY: John Wiley & Sons. Furry, W., & Hurwitz, H. (1945). Distribution of numbers and distribution of significant figures. Nature, 155, 52– 53. Golden, T., Skalak, S., & Clayton, M. (2006). A guide to forensic accounting investigation. Hoboken, NJ: John Wiley & Sons. Good, I. (1965). Letter to the editor. The American Statistician, 19, 43. Goudsmit, S. (1977). Pitfalls in elementary probability. Proceedings of the American Philosophical Society, 121, 188– 189. Goudsmit, S., & Furry, W. (1944). Significant figures of numbers in statistical tables. Nature, 154, 800– 801. Gramling, A., & Watson, M. (2009). Analysis of peer review reports: A focus on deficiencies of the Top 20 triennially inspected firms. Current Issues in Auditing, 3 (2), A1– A14. Grazioli, S., Jamal, K., & Johnson, P. (2006). A cognitive approach to fraud detection. Journal of Forensic Accounting, 7 (2), 65– 88. Grisso, T. (2010). Guidance for improving forensic reports: A review of common errors. Open Access Journal of Forensic Psychology, 2, 102– 115. Hamming, R. (1970). On the distribution of numbers. Bell System Technical Journal, 49, 1609– 25. Herrmann, D., & W. Thomas. (2005). Rounding of analyst forecasts. The Accounting Review, 80 (3), 805– 824. Hill, T. (1988). Random number guessing and the first digit phenomenon. Psychological Reports, 62 (3), 967– 971. Hill, T. (1995). A statistical derivation of the significant-digit law. Statistical Science, 10 (4), 354– 363. Hsu, E. (1948). An experimental study on “mental numbers” and a new application. The Journal of General Psychology, 38, 57– 67. Institute of Internal Auditors. (2005). Global technology audit guide: Information technology controls. Altamonte Springs, FL: Author. Internal Revenue Service. (1979). Discriminant function (DIF) handbook (Document 6588). Washington, D.C.: U.S. Department of the Treasury. Internal Revenue Service. (1989). Taxpayer compliance measurement program handbook (Document 6457). Washington, D.C.: U.S. Department of the Treasury. International Federation of Accountants (IFAC). (2002). IT Monitoring. New York, NY: Author. Ittig, P. (2004). Comparison of efficient seasonal indexes. Journal of Applied Mathematics and Decision Sciences, 8 (2), 87– 105. Knuth, D. (1969). The art of computer programming volume 2: Seminumerical algorithms. Reading, MA: Addison Wesley. Miller, S., & Nigrini, M. (2008). Order statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Volume 2008, Article ID 382948, 19 pages. Mosimann, J., Wiseman, C., & Edelman, R. (1995). Data fabrication: Can people generate random digits? Accountability in Research, 4 (1), 31– 55. Nelson, L. (1984). Technical aids. Journal of Quality Technology, 16, 175– 176. Newbold, P., Carlson, W., & Thorne, B. (2010). Statistics for business and economics 7th Edition. Upper Saddle River, NJ: Prentice-Hall. Nigrini, M. (1994). Using digital frequencies to detect fraud. The White Paper, (April), 3– 6. Nigrini, M. (1996). A taxpayer compliance application of Benford's Law. The Journal of the American Taxation Association. 18 (1), 72– 91. Nigrini, M. (1999). Fraud detection: I've got your number. Journal of Accountancy, May 1999, 79– 83. Nigrini, M. (2005). An assessment of the change in the incidence of earnings management around the Enron-Andersen episode. Review of Accounting and Finance, 4 (1), 92– 110. Nigrini, M. (2006). Monitoring techniques available to the forensic accountant. Journal of Forensic Accounting, 7 (2), 321– 344. Nigrini, M., & Johnson, A. (2008). Using key performance indicators and risk measures in continuous monitoring. Journal of Emerging Technologies in Accounting, 5, 65– 80. Nigrini, M., & Miller, S. (2007). Benford's Law applied to hydrology data—results and relevance to other geophysical data, Mathematical Geology, 39 (5), 469– 490. Nigrini, M., & Miller, S. (2009). Data diagnostics using second-order tests of Benford's Law, Auditing: A Journal of Practice and Theory, 28 (2), 305– 324. Nigrini, M., & Mittermaier, L. (1997). The use of Benford's Law as an aid in analytical procedures, Auditing: A Journal of Practice and Theory, 16 (2): 52– 67. Pinkham, R. (1961). On the distribution of first significant digits. Annals of Mathematical Statistics, 32 (4), 1223– 1230. PricewaterhouseCoopers. (2006). State of the internal audit profession study: Continuous auditing gains momentum. New York, NY: Author. PricewaterhouseCoopers. (2007a). State of the internal audit profession study: Pressures build for continual focus on risk. New York, NY: Author. PricewaterhouseCoopers. (2007b). Internal Audit 2012. New York, NY: Author. Raimi, R. (1969a). On the distribution of first significant figures. The American Mathematical Monthly, 76 (4), 342– 348. Raimi, R. (1969b). The peculiar distribution of first digits. Scientific American, 221 (6), 109– 120. Raimi, R. (1976). The first digit problem. The American Mathematical Monthly, 83 (7), 521– 538. Raimi, R. (1985). The first digit phenomenon again. Proceedings of the American Philosophical Society, 129, 211– 219. Sentence, W. (1973). A further analysis of Benford's Law. Fibonacci Quarterly, 11, 490– 494. Slovic, P. (1966). Cue-consistency and cue-utilization in judgment. The American Journal of Psychology, 79 (3), 427– 434. Stewart, I. (1993). The law of anomalous numbers. Working paper, Mathematics Institute, University of Warwick. Published in Spektrum der Wissenschaft, April, 1994. Stigler, G. (1945). The distribution of leading digits in statistical tables. Working paper. University of Chicago, Regenstein Library Special Collections, George J. Stigler Archives. Thomas, J. (1989). Unusual patterns in reported earnings. The Accounting Review, 64 (October), 773– 787. Tootle, G., Piechota, T., & A. Singh. (2005). Coupled oceanic-atmospheric variability and United States streamflow. Water Resources Research, 4, W12408, DOI:10.1029/2005Wr004381. Tsao, N. (1974). On the distribution of significant digits and roundoff errors. Communications of the ACM, 17, 269– 271. Varian, H. (1972). Benford's Law. The American Statistician, 23(June), 65– 66. Vasarhelyi, M. (1983). A framework for audit automation: Online technology and the audit process. The Accounting Forum. Wall Street Journal. (1998). Tax Report: An IRS blooper startles thousands of taxpayers, February 18, 1998. Front page. Wilk, M., & Gnanadesikan. (1968). Probability plotting methods for the analysis of data. Biometrika, 55 (1), 1– 17. Williams, M., Moss, S., Bradshaw, J., & Rinehart, N. (2002). Brief report: Random number generation in autism. Journal of Autism and Developmental Disorders, 32 (1), 43– 47. Wlodarski, J. (1971). Fibonacci and Lucas numbers tend to obey Benford's Law. Fibonacci Quarterly, 9, 87– 88. Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations ReferencesRelatedInformation" @default.
- W4251997769 created "2022-05-12" @default.
- W4251997769 date "2011-05-23" @default.
- W4251997769 modified "2023-09-23" @default.
- W4251997769 title "References" @default.
- W4251997769 cites W1481984145 @default.
- W4251997769 cites W1565202109 @default.
- W4251997769 cites W1602011302 @default.
- W4251997769 cites W1966956614 @default.
- W4251997769 cites W1970201444 @default.
- W4251997769 cites W1973836215 @default.
- W4251997769 cites W1980015472 @default.
- W4251997769 cites W1990708181 @default.
- W4251997769 cites W1998843124 @default.
- W4251997769 cites W2028756481 @default.
- W4251997769 cites W2030839260 @default.
- W4251997769 cites W2038117035 @default.
- W4251997769 cites W2038139560 @default.
- W4251997769 cites W2038573907 @default.
- W4251997769 cites W2043225555 @default.
- W4251997769 cites W2044854736 @default.
- W4251997769 cites W2054026964 @default.
- W4251997769 cites W2058065576 @default.
- W4251997769 cites W2062717023 @default.
- W4251997769 cites W2065551689 @default.
- W4251997769 cites W2081458809 @default.
- W4251997769 cites W2092630284 @default.
- W4251997769 cites W2094417016 @default.
- W4251997769 cites W2100369046 @default.
- W4251997769 cites W2100846639 @default.
- W4251997769 cites W2104466937 @default.
- W4251997769 cites W2114847851 @default.
- W4251997769 cites W2120749854 @default.
- W4251997769 cites W2130516903 @default.
- W4251997769 cites W2165955765 @default.
- W4251997769 cites W2178477566 @default.
- W4251997769 cites W2792826932 @default.
- W4251997769 cites W3122970689 @default.
- W4251997769 cites W4229711531 @default.
- W4251997769 cites W4236178562 @default.
- W4251997769 cites W4238419681 @default.
- W4251997769 cites W4239708180 @default.
- W4251997769 doi "https://doi.org/10.1002/9781118386798.refs" @default.
- W4251997769 hasPublicationYear "2011" @default.
- W4251997769 type Work @default.
- W4251997769 citedByCount "0" @default.
- W4251997769 crossrefType "other" @default.
- W4251997769 hasBestOaLocation W42519977691 @default.
- W4251997769 hasConcept C41008148 @default.
- W4251997769 hasConceptScore W4251997769C41008148 @default.
- W4251997769 hasLocation W42519977691 @default.
- W4251997769 hasOpenAccess W4251997769 @default.
- W4251997769 hasPrimaryLocation W42519977691 @default.
- W4251997769 hasRelatedWork W1596801655 @default.
- W4251997769 hasRelatedWork W2130043461 @default.
- W4251997769 hasRelatedWork W2350741829 @default.
- W4251997769 hasRelatedWork W2358668433 @default.
- W4251997769 hasRelatedWork W2376932109 @default.
- W4251997769 hasRelatedWork W2382290278 @default.
- W4251997769 hasRelatedWork W2390279801 @default.
- W4251997769 hasRelatedWork W2748952813 @default.
- W4251997769 hasRelatedWork W2899084033 @default.
- W4251997769 hasRelatedWork W2530322880 @default.
- W4251997769 isParatext "false" @default.
- W4251997769 isRetracted "false" @default.
- W4251997769 workType "other" @default.