Matches in SemOpenAlex for { <https://semopenalex.org/work/W4252481957> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4252481957 endingPage "275" @default.
- W4252481957 startingPage "269" @default.
- W4252481957 abstract "Free Access References Carlos A Braumann, Carlos A Braumann University of Evora, Evora, PortugalSearch for more papers by this author Book Author(s):Carlos A Braumann, Carlos A Braumann University of Evora, Evora, PortugalSearch for more papers by this author First published: 04 March 2019 https://doi.org/10.1002/9781119166092.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References Aït-Sahalia, Y. (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica, 70 (1), 223– 262, doi:10.1111/1468-0262.00274. Aït-Sahalia, Y. (2008) Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics, 36 (2), 906– 937, doi:10.1214/009053607000000622. Allee, W.C., Emerson, A.E., Park, O., Park, T., and Schmidt, K.P. (1949) Principles of Animal Ecology, Saunders, Philadelphia. Alvarez, L.H.R. and Shepp, L.A. (1998) Optimal harvesting in stochastically fluctuating populations. Journal of Mathematical Biology, 37 (2), 155– 177, doi:10.1007/s002850050124. Arnold, L. (1974) Stochastic Differential Equations: Theory and Applications, Wiley, New York. Bachelier, L. (1900) Théorie de la speculation. Annales Scientifiques de l'École Normal Supérieure 3ème Série, 17, 21– 88. Bandi, F.M. and Phillips, P.C.B. (2003) Fully nonparametric estimation of scalar diffusion models. Econometrica, 71 (1), 241– 283, doi:10.1111/1468-0262.00395. Basawa, I.V. and Rao, C.L.S.P. (1980) Statistical Inference for Stochastic Processes, Academic Press, London. Beddington, J.R. and May, R.M. (1977) Harvesting natural populations in a randomly fluctuating environment. Science, 197 (4302), 463– 463, doi:10.1126/science.197.4302.463. Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy, 81 (3), 637– 654, doi:10.1086/260062. Bouleau, N. and Lépingle (1994) Numerical Methods for Stochastic Processes, Wiley, New York. Braumann, C.A. (1985) Stochastic differential equation models of fisheries in an uncertain world: extinction probabilities, optimal fishing effort, and parameter estimation, in Mathematics in Biology and Medicine (eds V. Capasso, E. Grosso, and L.S. Paveri-Fontana), Springer, Berlin, pp. 201– 206. Braumann, C.A. (1993) Model fitting and prediction in stochastic population growth models in random environments. Bulletin of the International Statistical Institute, LV (CP1), 163– 164. Braumann, C.A. (1999a) Comparison of geometric Brownian motions and applications to population growth and finance. Bulletin of the International Statistical Institute, LVIII (CP1), 125– 126. Braumann, C.A. (1999b) Variable effort fishing models in random environments. Mathematical Biosciences, 156 (1–2), 1– 19, doi:10.1016/S0025-5564(98)10058-5. Braumann, C.A. (2002) Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Mathematical Biosciences, 177 & 178, 229– 245, doi:10.1016/S0025-5564(01)00110-9. Braumann, C.A. (2003) Modeling population growth in random environments: Ito or Stratonovich calculus? Bulletin of the International Statistical Institute, LX (CP1), 119– 120. Braumann, C.A. (2005) Introdução às Equações Diferenciais Estocásticas e Aplicações, Sociedade Portuguesa de Estatística, Lisboa. Braumann, C.A. (2007a) Itô versus Stratonovich calculus in random population growth. Mathematical Biosciences, 206 (3), 81– 107, doi:10.1016/j.mbs.2004.09.002. Braumann, C.A. (2007b) Population growth in random environments: which stochastic calculus? Bulletin of the International Statistical Institute, LXI, 5802– 5805. Braumann, C.A. (2008) Growth and extinction of populations in randomly varying environments. Computers and Mathematics with Applications, 56 (3), 631– 644, doi:10.1016/j.camwa.2008.01.006. Braumann, C.A., Filipe, P.A., Carlos, C., and Roquete, C.J. (2009) Growth of individuals in randomly fluctuating environments, in Proceedings of the International Conference in Computational and Mathematical Methods in Science e Engineering (ed. J. Vigo-Aguiar), CMMSE, pp. 201– 212. Bravo, J.M.V. (2007) Tábuas de Mortalidade Contemporâneas e Prospectivas: Modelos Estocásticos, Aplicações Actuariais e Cobertura do Risco de Longevidade, Ph.D. thesis, Universidade de Évora, Évora. Brites, N.M. (2017) Stochastic Differential Equation Harvesting Models: Sustainable Policies and Profit Optimization, Ph.D. thesis, Universidade de Évora, Évora. Brites, N.M. and Braumann, C.A. (2017) Fisheries management in random environments: Comparison of harvesting policies for the logistic model. Fisheries Research, 195, 238– 246, doi:10.1016/j.fishres.2017.07.016. Capocelli, R.M. and Ricciardi, L.M. (1974) A diffusion model for population growth in a random environment. Theoretical Population Biology, 5 (1), 28– 41, doi:10.1016/0040-5809(74)90050-1. Carlos, C. (2013) Modelos de Crescimento Populacional em Ambiente Aleatório: Efeito de Incorreta Especificação do Modelo, Efeitos de Allee e Tempos de Extinção, Ph.D. thesis, Universidade de Évora, Évora. Carlos, C. and Braumann, C.A. (2005) Tempos de extinção para populações em ambiente aleatório, in Estatística Jubilar (eds C.A. Braumann, P. Infante, M.M. Oliveira, R. Alpizar-Jara, and F. Rosado), Edições SPE, Lisboa, pp. 133– 142. Carlos, C. and Braumann, C.A. (2006) Tempos de extinção para populações em ambiente aleatório e cálculos de Itô e Stratonovich, in Ciência Estatística (eds L.C. e Castro, E.G. Martins, C. Rocha, M.F. Oliveira, M.M. Leal, and F. Rosado), Edições SPE, Lisboa, pp. 229– 238. Carlos, C. and Braumann, C.A. (2014) Consequences of an incorrect model specification on population growth, in New Advances in Statistical Modeling and Applications (eds A. Pacheo, R. Santos, M.R. Oliveira, and C.D. Paulino), Springer, Heidelberg, pp. 105– 113, doi:10.1007/978-3-319-05323-3_10. Carlos, C. and Braumann, C.A. (2017) General population growth models with Allee effects in a random environment. Ecological Complexity, 30, 26– 33, doi:10.1016/j.ecocom.2016.09.003. Carlos, C., Braumann, C.A., and Filipe, P.A. (2013) Models of individual growth in a random environment: study and application of first passage times, in Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications (eds J.L. daSilva, F. Caeiro, I. Natário, and C.A. Braumann), Springer, Berlin, pp. 103– 111, doi:10.1007/978-3-642-34904-1_10. Clark, C.W. (2010) Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 3rd edition, Wiley, New York. Clark, J.M.C. (1966) The Representation of Nonlinear Stochastic Systems with Applications to Filtering, Ph.D. thesis, Imperial College, London. Cont, R. and Tankov, P. (2003) Financial Modelling with Jum Processes, Chapman & Hall/CRC, London/Boca Raton. Cox, D.R. and Miller, H.D. (1965) The Theory of Stochastic Processes, Chapman & Hall/CRC, Boca Raton. Dacunha-Castelle, D. and Florens-Zmirou, D. (1986) Estimators of coefficients of a diffusion from discrete observations. Stochastics, 19 (4), 263– 284, doi:10.1080/17442508608833428. Dennis, B. (1989) Allee effects: Population growth, critical density and the chance of extinction. Natural Resource Modelling, 3, 481– 539. Dennis, B. (2002) Allee effects in stochastic populations. Oikos, 96 (3), 389– 401, doi:10.1034/j.1600-0706.2002.960301.x. Einstein, A. (1905) Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik, 322 (8), 549– 560, doi:10.1002/andp.19053220806. Einstein, A. (1956) Investigations on the Theory of Brownian Movement, Dover, New York. Feldman, M.W. and Roughgarden, J. (1975) A population's stationary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing. Theoretical Population Biology, 7 (2), 197– 207, doi:10.1016/0040-5809(75)90014-3. Filipe, P.A. (2011) Equações Diferenciais Estocásticas na Modelação do Crescimento Individual em Ambiente Aleatório, Ph.D. thesis, Universidade de Évora, Évora. Filipe, P.A., Braumann, C.A., Brites, N.M., and Roquete, C.J. (2010) Modelling animal growth in random environments: An application using nonparametric estimation. Biometrical Journal, 52 (5), 653– 666, doi:10.1002/bimj.200900273. Filipe, P.A., Braumann, C.A., and Carlos, C. (2015) Profit optimization for cattle growing in a randomly fluctuating environment. Optimization: A Journal of Mathematical Programming and Operations Research, 64 (6), 1393– 1407, doi:10.1080/02331934.2014.974598. Fleming, W.H. and Rishel, R.W. (1975) Deterministic and Stochastic Optimal Control, Springer, New York. Florens-Zmirou, D. (1993) On estimating the diffusion coefficient from discrete observations. Journal of Applied Probability, 30 (4), 790– 804, doi:10.2307/3214513. Freedman, D. (1983) Brownian Motion and Diffusion, Springer, New York. Garcia, O. (1983) A stochastic differential equation model for the height growth of forest stands. Biometrics, 39 (4), 1059– 1072, doi:10.2307/2531339. Gard, T.C. (1988) Introduction to Stochastic Differential Equations, Marcel Dekker, New York. Gihman, I.I. and Skorohod, A.V. (1972) Stochastic Differential Equations, Springer, Berlin. Gikhman, I.I. and Skorohod, A.V. (1969) Introduction to the Theory of Random Processes, W. B. Saunders, Philadelphia. Gray, A.H. (1964) Stability and Related Problems in Randomly Excited Systems, Ph.D. thesis, California Institute of Technology Press. Hanson, F.B. (2007) Applied Stochastic Processes and Control for Jump Diffusions: Modeling, Analysis, and Computation, Society for Industrial and Applied Mathematics. Hanson, F.B. and Ryan, D. (1998) Optimal harvesting with both population and price dynamics. Mathematical Biosciences, 148 (2), 129– 146, doi:10.1016/S0025-5564(97)10011-6. Hening, A. and H. Nguyen, D. (2018) Persistence in stochastic Lotka–Volterra food chains with intraspecific competition. Bulletin of Mathematical Biology, 80 (10), 2527– 2560, doi:0.1007/s11538-018-0468-5. Iacus, S.M. (2008) Simulation and Inference for Stochastic Differential Equations: With R Examples, Springer. Itô, K. (1951) On Stochastic Differential Equations, American Mathematical Society Memoirs No. 4. Jiang, G.J. and Knight, J.L. (1997) A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model. Econometric Theory, 13 (5), 615– 645, doi:10.2307/3532619. Kar, T.K. and Chakraborty, K. (2011) A bioeconomic assessment of the Bangladesh shrimp fishery. World Journal of Modelling and Simulation, 7 (1), 58– 69. Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus, Springer, New York. Karatzas, I. and Shreve, S.E. (1998) Methods of Mathematical Finance, Springer, New York. Karlin, S. and Taylor, H.M. (1981) A Second Course in Stochastic Processes, Academic Press, New York. Kessler, M., Lindner, A., and Sørensen, M. (2012) Statistical Methods for Stochastic Differential Equations , Chapman and Hall/CRC, Boca Raton, London, New York. Khashminsky, R.Z. (1969) Ustoychivost' Sistem Diffentsual'nykh Uraveniy pri Sluchaynykh Vozmushcheniyskh (in Russian), Stability of Systems of Differential Equations in the Presence of Random Perturbations, Nauka Press. Kloeden, P.E. and Platen, E. (1992) Numerical Solution of Stochastic Differential Equations, Springer, Berlin. Kloeden, P.E., Platen, E., and Schurz, H. (1994) Numerical Solution of SDE through Computer Experiments, Springer, Berlin. Küchler, U. and Sørensen, M. (1997) Exponential Families of Stochastic Processes, Springer, New York. Lagarto, S. (2014) Modelos Estocásticos de Taxas de Mortalidade e Aplicações , Ph.D. thesis, Universidade de Évora, Évora. Lagarto, S. and Braumann, C.A. (2014) Modeling human population death rates: A bi-dimensional stochastic Gompertz model with correlated Wiener processes, in New Advances in Statistical Modeling and Applications (eds A. Pacheo, R. Santos, M.R. Oliveira, and C.D. Paulino), Springer, Heidelberg, pp. 95– 103, doi:10.1007/978-3-319-05323-3_9. Levins, R. (1969) The effect of random variations of different types on population growth. Proceedings of the National Academy of Sciences USA, 62 (4), 1062– 1065. Liu, M., Du, C., and Deng, M. (2018) Persistence and extinction of a modified Leslie–Gower Holling-type II stochastic predator–prey model with impulsive toxicant input in polluted environments. Nonlinear Analysis: Hybrid Systems, 27, 177– 190, doi:10.1016/j.nahs.2017.08.001. Lungu, E. and Øksendal, B. (1997) Optimal harvesting from a population in a stochastic crowded environment. Mathematical Biosciences, 145 (1), 47– 75, doi:10.1016/S0025-5564(97)00029-1. Lv, Q. and Pitchford, J.W. (2007) Stochastic von Bertalanffy models, with applications to fish recruitment. Journal of Theoretical Biology, 244 (4), 640 – 655, doi:10.1016/j.jtbi.2006.09.009. Malthus, T.R. (1798) An Essay on the Principle of Population, J. Johnson, in St. Paul's Church-yard, London. Library of Economics and Liberty [Online] available from www.econlib.org/library/Malthus/malPop.html. May, R.M. (1973) Stability in randomly fluctuating versus deterministic environments. American Naturalist, 107 (957), 621– 650, doi:10.1086/282863. May, R.M. (1974) Stability and Complexity in Model Ecosystems, 2nd edition, Princeton University Press, New Jersey. May, R.M. and MacArthur, R.H. (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA, 69 (5), 1109– 1113, doi:10.1073/pnas.69.5.1109. McKean, H.P. (1969) Stochastic Integrals, Academic Press, New York. Merton, R.C. (1971) Optimum consumption and portfolio rules in a continuous time model. Journal of Economic Theory, 3 (4), 373– 413. Merton, R.C. (1973) Theory of rational option pricing. Bell Journal of Economics and Management Science, 4 (1), 141– 183. Nicolau, J. (2003) Bias reduction in nonparametric diffusion coefficient estimation. Econometric Theory, 19 (5), 754– 777, doi:10.2307/3533434. Øksendal, B. (2003) Stochastic Differential Equations. An Introduction with Applications, 6th edition, Springer, New York. Øksendal, B. and Sulem, A. (2007) Applied Stochastic Control of Jump Diffusions, 2nd edition, Springer, Berlin. Pinheiro, S. (2016) Persistence and existence of stationary measures for a logistic growth model with predation. Stochastic Models, 32 (4), 513– 538, doi:10.1080/15326349.2016.1174587. Rudin, W. (1987) Real and Complex Analysis, 3rd edition, WCB/McGraw-Hill, New York. Rudnicki, R. and Pichór, K. (2007) Influence of stochastic perturbation on prey–predator systems. Mathematical Biosciences, 206 (1), 108– 119, doi:10.1016/j.mbs.2006.03.006. Schuss, Z. (1980) Theory and Applications of Stochastic Differential Equations, Wiley, New York. Shoutens, W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives, Wiley, New York. Sørensen, H. (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey. International Statistical Review, 72 (3), 337– 354, doi:10.1111/j.1751-5823.2004.tb00241.x. Sørensen, M. (2009) Parametric inference for discretely sampled stochastic differential equations, in Handbook of Financial Time Series (eds T. Mikosch, J.P. Kreiß, R.A. Davis, and T.G. Andersen), Springer, Berlin, Heidelberg, pp. 531– 553, doi:10.1007/978-3-540-71297-8_23. Stratonovich, R.L. (1966) A new representation of stochastic integrals and equations. SIAM Journal on Control, 4 (2), 362– 371, doi:10.1137/0304028. Stroock, D.W. and Varadhan, S.R.S. (2006) Multidimensional Diffusion Processes, Springer, Berlin. Suri, R. (2008) Optimal Harvesting Strategies for Fisheries: A Differential Equations Approach, Ph.D. thesis, Massey University, Albany New Zealand. Turelli, M. (1978) A reexamination of stability in randomly varying environments with comments on the stochastic theory of limiting similarity. Theoretical Population Biology, 13 (2), 244– 267, doi:10.1016/0040-5809(78)90045-X. Uhlenbeck, G.E. and Ornstein, L.S. (1930) On the theory of Brownian motion. Physical Review, 36, 823– 841, doi:10.1103/PhysRev.36.823. University of California, Berkeley USA and Max Planck Institute for Demographic Research, Germany (2018) Human Mortality Database, https://www.mortality.org/. Data downloaded on: 2018-08-26. Wong, E. and Hajek, B. (1985) Stochastic Processes in Engineering Systems, Springer, New York. Wong, E. and Zakai, M. (1965) The oscillations of stochastic integrals. Probability Theory and Related Fields, 4 (2), 103– 112, doi:10.1007/BF00536744. Wong, E. and Zakai, M. (1969) Riemann–Stieltjes approximation of stochastic integrals. Probability Theory and Related Fields, 12 (2), 87– 97, doi:10.1007/BF00531642. Introduction to Stochastic Differential Equations with Applications to Modelling in Biology and Finance ReferencesRelatedInformation" @default.
- W4252481957 created "2022-05-12" @default.
- W4252481957 date "2019-03-04" @default.
- W4252481957 modified "2023-10-12" @default.
- W4252481957 title "References" @default.
- W4252481957 cites W1008597700 @default.
- W4252481957 cites W1505052663 @default.
- W4252481957 cites W1508776097 @default.
- W4252481957 cites W1973376127 @default.
- W4252481957 cites W1977400475 @default.
- W4252481957 cites W1982672713 @default.
- W4252481957 cites W1983237122 @default.
- W4252481957 cites W1986577064 @default.
- W4252481957 cites W2005158847 @default.
- W4252481957 cites W2006851679 @default.
- W4252481957 cites W2010497553 @default.
- W4252481957 cites W2012199343 @default.
- W4252481957 cites W2017012107 @default.
- W4252481957 cites W2017957151 @default.
- W4252481957 cites W2024318216 @default.
- W4252481957 cites W2025135868 @default.
- W4252481957 cites W2028634290 @default.
- W4252481957 cites W2030248926 @default.
- W4252481957 cites W2030765885 @default.
- W4252481957 cites W2032250386 @default.
- W4252481957 cites W2038581091 @default.
- W4252481957 cites W2041214328 @default.
- W4252481957 cites W2057805880 @default.
- W4252481957 cites W2067610937 @default.
- W4252481957 cites W2067813367 @default.
- W4252481957 cites W2071723512 @default.
- W4252481957 cites W2074127538 @default.
- W4252481957 cites W2077791698 @default.
- W4252481957 cites W2082712272 @default.
- W4252481957 cites W2083465547 @default.
- W4252481957 cites W2098754649 @default.
- W4252481957 cites W2113687945 @default.
- W4252481957 cites W2113965515 @default.
- W4252481957 cites W2116705226 @default.
- W4252481957 cites W2145995277 @default.
- W4252481957 cites W2149484228 @default.
- W4252481957 cites W2151837081 @default.
- W4252481957 cites W222635537 @default.
- W4252481957 cites W2321483784 @default.
- W4252481957 cites W2328990529 @default.
- W4252481957 cites W2346682943 @default.
- W4252481957 cites W2487303223 @default.
- W4252481957 cites W2502413221 @default.
- W4252481957 cites W2527169223 @default.
- W4252481957 cites W2639639281 @default.
- W4252481957 cites W2753690275 @default.
- W4252481957 cites W2761004409 @default.
- W4252481957 cites W2964311204 @default.
- W4252481957 cites W3022114093 @default.
- W4252481957 cites W3124459517 @default.
- W4252481957 cites W4205218364 @default.
- W4252481957 cites W4231021340 @default.
- W4252481957 cites W4231057775 @default.
- W4252481957 cites W4238187298 @default.
- W4252481957 cites W4247340585 @default.
- W4252481957 cites W4292198165 @default.
- W4252481957 cites W4294990616 @default.
- W4252481957 cites W4300810540 @default.
- W4252481957 cites W4301385844 @default.
- W4252481957 cites W4302609762 @default.
- W4252481957 cites W972290543 @default.
- W4252481957 doi "https://doi.org/10.1002/9781119166092.refs" @default.
- W4252481957 hasPublicationYear "2019" @default.
- W4252481957 type Work @default.
- W4252481957 citedByCount "0" @default.
- W4252481957 crossrefType "other" @default.
- W4252481957 hasBestOaLocation W42524819571 @default.
- W4252481957 hasConcept C41008148 @default.
- W4252481957 hasConceptScore W4252481957C41008148 @default.
- W4252481957 hasLocation W42524819571 @default.
- W4252481957 hasOpenAccess W4252481957 @default.
- W4252481957 hasPrimaryLocation W42524819571 @default.
- W4252481957 hasRelatedWork W1596801655 @default.
- W4252481957 hasRelatedWork W2130043461 @default.
- W4252481957 hasRelatedWork W2350741829 @default.
- W4252481957 hasRelatedWork W2358668433 @default.
- W4252481957 hasRelatedWork W2376932109 @default.
- W4252481957 hasRelatedWork W2382290278 @default.
- W4252481957 hasRelatedWork W2390279801 @default.
- W4252481957 hasRelatedWork W2748952813 @default.
- W4252481957 hasRelatedWork W2899084033 @default.
- W4252481957 hasRelatedWork W2530322880 @default.
- W4252481957 isParatext "false" @default.
- W4252481957 isRetracted "false" @default.
- W4252481957 workType "other" @default.