Matches in SemOpenAlex for { <https://semopenalex.org/work/W4252772074> ?p ?o ?g. }
- W4252772074 abstract "<sec> <title>BACKGROUND</title> Brugada syndrome is a rare inherited arrhythmia with a unique electrocardiogram (ECG) pattern (type 1 Brugada ECG pattern), which is a major cause of sudden cardiac death in young people. Automatic screening for the ECG pattern of Brugada syndrome by a deep learning model gives us the chance to identify these patients at an early time, thus allowing them to receive life-saving therapy. </sec> <sec> <title>OBJECTIVE</title> To develop a deep learning-enabled ECG model for diagnosing Brugada syndrome. </sec> <sec> <title>METHODS</title> A total of 276 ECGs with a type 1 Brugada ECG pattern (276 type 1 Brugada ECGs and another randomly retrieved 276 non-Brugada type ECGs for one to one allocation) were extracted from the hospital-based ECG database for a two-stage analysis with a deep learning model. We first trained the network to identify right bundle branch block (RBBB) pattern, and then, we transferred the first-stage learning to the second task to diagnose the type 1 Brugada ECG pattern. The diagnostic performance of the deep learning model was compared to that of board-certified practicing cardiologists. The model was also validated by the independent international data of ECGs. </sec> <sec> <title>RESULTS</title> The AUC (area under the curve) of the deep learning model in diagnosing the type 1 Brugada ECG pattern was 0.96 (sensitivity: 88.4%, specificity: 89.1%). The sensitivity and specificity of the cardiologists for the diagnosis of the type 1 Brugada ECG pattern were 62.7±17.8%, and 98.5±3.0%, respectively. The diagnoses by the deep learning model were highly consistent with the standard diagnoses (Kappa coefficient: 0.78, McNemar test, P = .86). However, the diagnoses by the cardiologists were significantly different from the standard diagnoses, with only moderate consistency (Kappa coefficient: 0.60, McNemar test, P = 2.35x10-22). For the international validation, the AUC of the deep learning model for diagnosing the type 1 Brugada ECG pattern was 0.99 (sensitivity: 85.7%, specificity: 100.0%). </sec> <sec> <title>CONCLUSIONS</title> We presented the first deep learning-enabled ECG model for diagnosing Brugada syndrome, which is a robust screening tool with better diagnostic sensitivity than that of cardiologists. </sec> <sec> <title>CLINICALTRIAL</title> <p /> </sec>" @default.
- W4252772074 created "2022-05-12" @default.
- W4252772074 creator A5000180119 @default.
- W4252772074 creator A5000278506 @default.
- W4252772074 creator A5003158130 @default.
- W4252772074 creator A5010092352 @default.
- W4252772074 creator A5018201435 @default.
- W4252772074 creator A5024132145 @default.
- W4252772074 creator A5031322893 @default.
- W4252772074 creator A5033867132 @default.
- W4252772074 creator A5038036251 @default.
- W4252772074 creator A5043399804 @default.
- W4252772074 creator A5044267849 @default.
- W4252772074 creator A5050317042 @default.
- W4252772074 creator A5061189878 @default.
- W4252772074 creator A5064008527 @default.
- W4252772074 creator A5065172566 @default.
- W4252772074 creator A5073992148 @default.
- W4252772074 creator A5074831686 @default.
- W4252772074 creator A5086894006 @default.
- W4252772074 date "2020-07-06" @default.
- W4252772074 modified "2023-09-23" @default.
- W4252772074 title "A Deep Learning-enabled Electrocardiogram Model for the Identification of a Rare Inherited Arrhythmia: Brugada Syndrome (Preprint)" @default.
- W4252772074 cites W1978083213 @default.
- W4252772074 cites W1989649664 @default.
- W4252772074 cites W2008733212 @default.
- W4252772074 cites W2029930541 @default.
- W4252772074 cites W2046336333 @default.
- W4252772074 cites W2079023701 @default.
- W4252772074 cites W2102150307 @default.
- W4252772074 cites W2128734390 @default.
- W4252772074 cites W2141622694 @default.
- W4252772074 cites W2158698691 @default.
- W4252772074 cites W2161381512 @default.
- W4252772074 cites W2165698076 @default.
- W4252772074 cites W220488953 @default.
- W4252772074 cites W2264508662 @default.
- W4252772074 cites W2265617997 @default.
- W4252772074 cites W2324085238 @default.
- W4252772074 cites W2505317588 @default.
- W4252772074 cites W2520637003 @default.
- W4252772074 cites W2565762144 @default.
- W4252772074 cites W2599761051 @default.
- W4252772074 cites W2616249537 @default.
- W4252772074 cites W2888481150 @default.
- W4252772074 cites W2898843852 @default.
- W4252772074 cites W2902644322 @default.
- W4252772074 cites W2940793653 @default.
- W4252772074 cites W2953958347 @default.
- W4252772074 cites W2963665779 @default.
- W4252772074 cites W3098971646 @default.
- W4252772074 cites W4239943352 @default.
- W4252772074 doi "https://doi.org/10.2196/preprints.22163" @default.
- W4252772074 hasPublicationYear "2020" @default.
- W4252772074 type Work @default.
- W4252772074 citedByCount "0" @default.
- W4252772074 crossrefType "posted-content" @default.
- W4252772074 hasAuthorship W4252772074A5000180119 @default.
- W4252772074 hasAuthorship W4252772074A5000278506 @default.
- W4252772074 hasAuthorship W4252772074A5003158130 @default.
- W4252772074 hasAuthorship W4252772074A5010092352 @default.
- W4252772074 hasAuthorship W4252772074A5018201435 @default.
- W4252772074 hasAuthorship W4252772074A5024132145 @default.
- W4252772074 hasAuthorship W4252772074A5031322893 @default.
- W4252772074 hasAuthorship W4252772074A5033867132 @default.
- W4252772074 hasAuthorship W4252772074A5038036251 @default.
- W4252772074 hasAuthorship W4252772074A5043399804 @default.
- W4252772074 hasAuthorship W4252772074A5044267849 @default.
- W4252772074 hasAuthorship W4252772074A5050317042 @default.
- W4252772074 hasAuthorship W4252772074A5061189878 @default.
- W4252772074 hasAuthorship W4252772074A5064008527 @default.
- W4252772074 hasAuthorship W4252772074A5065172566 @default.
- W4252772074 hasAuthorship W4252772074A5073992148 @default.
- W4252772074 hasAuthorship W4252772074A5074831686 @default.
- W4252772074 hasAuthorship W4252772074A5086894006 @default.
- W4252772074 hasConcept C108583219 @default.
- W4252772074 hasConcept C126322002 @default.
- W4252772074 hasConcept C154945302 @default.
- W4252772074 hasConcept C164705383 @default.
- W4252772074 hasConcept C2775935837 @default.
- W4252772074 hasConcept C2777382798 @default.
- W4252772074 hasConcept C2779161974 @default.
- W4252772074 hasConcept C2780040984 @default.
- W4252772074 hasConcept C2780350126 @default.
- W4252772074 hasConcept C2988455589 @default.
- W4252772074 hasConcept C41008148 @default.
- W4252772074 hasConcept C71924100 @default.
- W4252772074 hasConceptScore W4252772074C108583219 @default.
- W4252772074 hasConceptScore W4252772074C126322002 @default.
- W4252772074 hasConceptScore W4252772074C154945302 @default.
- W4252772074 hasConceptScore W4252772074C164705383 @default.
- W4252772074 hasConceptScore W4252772074C2775935837 @default.
- W4252772074 hasConceptScore W4252772074C2777382798 @default.
- W4252772074 hasConceptScore W4252772074C2779161974 @default.
- W4252772074 hasConceptScore W4252772074C2780040984 @default.
- W4252772074 hasConceptScore W4252772074C2780350126 @default.
- W4252772074 hasConceptScore W4252772074C2988455589 @default.
- W4252772074 hasConceptScore W4252772074C41008148 @default.
- W4252772074 hasConceptScore W4252772074C71924100 @default.
- W4252772074 hasLocation W42527720741 @default.