Matches in SemOpenAlex for { <https://semopenalex.org/work/W4253248322> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4253248322 endingPage "418" @default.
- W4253248322 startingPage "413" @default.
- W4253248322 abstract "Free Access References Nicolae Dinculeanu, Nicolae DinculeanuSearch for more papers by this author Book Author(s):Nicolae Dinculeanu, Nicolae DinculeanuSearch for more papers by this author First published: 21 January 2000 https://doi.org/10.1002/9781118033012.refs AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onFacebookTwitterLinked InRedditWechat References D. Bakry, Limites “quadrantales” des martingales, Lecture Notes in Math. 863, Springer, Berlin Heidelberg, 1981. R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337– 352. R. G. Bartle, N. Dunford, and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289– 305.. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math. 5 (1974), 151– 164.. K. Bichteler, Stochastic integration and LP theory of semimartingales, Annals of Prob. 9 (1981), 49– 89.. S. Bochner, Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262– 276.. N. Bourbaki, Intégration, Hermann, Paris, 1952–1959, chap I-VI. J. K. Brooks and N. Dinculeanu, Strong additivity, absolute continuity and compactness in spaces of measures, J. Math. Analysis and Appl. 45 (1974), 156– 175.. J. K. Brooks and N. Dinculeanu, Lebesgue-type spaces for vector integration, linear operators, weak completeness and weak compactness, J. Math. Analysis and Appl. 54 (1976), 348– 389.. J. K. Brooks and N. Dinculeanu, Projections and regularity of abstract processes, Stochastic Analysis and Appl. 5 (1987), 17– 25.. J. K. Brooks and N. Dinculeanu, Regularity and the Doob-Meyer decomposition of abstract quasimartingales, Seminar on Stoch. Proc., Birkhäuser, 1988, 21– 63. J. K. Brooks and N. Dinculeanu, Itö formula for stochastic processes in Banach spaces, Conference on diffusion processes and related problems in Analysis, Birkhäuser, 1990, 349– 397. J. K. Brooks and N. Dinculeanu, Stochastic integration in Banach spaces, Seminar on Stoch. Proc., Birkhäuser, 1991, 27– 115. J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. AMS 144 (1974), 139– 162.. R. Cairoli, Une inégalité pour processus à indices multiples et ses applications, Lecture Notes 124, Sem. Prob. IV, Springer, Berlin Heidelberg, 1970. R. Cairoli, Décomposition de processus à indices doubles, Lecture Notes 191, Sem. Prob. V, Springer, Berlin Heidelberg, 1969–70. R. Cairoli and J. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111– 183.. S. D. Chatterji, Martingales of Banach-valued random variables, Bull AMS 66 (1960), 395– 398.. Nhansook Cho, Weak convergence of stochastic integrals driven by martingale measures, Stochastic Proc. and Their Appl. 59 (1995), 55– 79. C. Dellacherie and P. A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1975–1980. J. Diestel and J. Uhl Jr., Vector measures, AMS Mathematical Surveys 15, Providence, RI, 1977. N. Dinculeanu, Vector Measures, Pergamon Press, Oxford, 1967. N. Dinculeanu, Weak compactness and uniform convergence of operators in spaces of Bochner integrable functions, J. Math. Analysis and Appl. 109 (1985), 372– 387.. N. Dinculeanu, Vector-valued stochastic processes I. Vector measures and vector valued stochastic processes with finite variation, J. Theoretical Prob. 1 (1988), 149– 169.. N. Dinculeanu, Vector-valued stochastic processes V. Optional and predictable variation of stochastic measures and stochastic processes, Proc AMS 104 (1988), 625– 631.. N. Dinculeanu, Intégrale Stochastique des processus à semivariation finie, CRAS, Paris 326 (1998), 343– 346.. N. Dinculeanu, Stochastic processes with finite semivariation in Banach spaces and their stochastic integral, Rendiconti del Circolo Mat. di Palermo 48 (1999), 365– 400.. N. Dinculeanu, Stochastic Integration for abstract, two parameter processes I. Stochastic Processes with finite semivariation, Rendiconti del Circolo Mat. di Palermo 48 (1999). N. Dinculeanu, Stochastic integration for abstract, two parameter processes II. Square integrable martingales in Hilbert spaces, Stochastic Analysis and Appl. (to appear). N. Dinculeanu, Stochastic integral of process measures in Banach spaces I. Process measure with integrable variation, Rendiconti Accad. Naz. Sci., Memorie di Mat. e Appl. 22 (1998), 85– 128.. N. Dinculeanu, Stochastic integral of process measures in Banach spaces II. Process measures with integrable semivariation, Rendiconti Accad. Naz. Sci., Memorie di Mat. e Appl. 22 (1998), 129– 164.. N. Dinculeanu and C. Foiaş, Sur la représentation intégrale de certaines operations linéaires IV, Canad. J. Math. 13 (1961), 529– 556.. N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. 17 (1967), 505– 512. N. Dinculeanu and M. Muthiah, Stochastic integral of process measures in Banach spaces III. Orthogonal martingale measures, Rendiconti Accad. Naz. Sci., Memorie di Mat. e Appl. 23 (1999). N. Dinculeanu and J. J. Uhl Jr., A unifying Radon-Nikodym theorem for vector measures, J. Multivariate Analysis 3 (1973), 184– 203.. I. Dobrakov, On integration in Banach spaces I, Czech. Math. J. 20(95) (1970), 511– 536. I. Dobrakov, On integration in Banach spaces II, Czech. Math. J. 21(96) (1970), 680– 695. J. L. Doob, Stochastic Processes, Wiley, New York, 1953. M. Dozzi, On the Decomposition and integration of two parameter stochastic processes, Lecture Notes 863, Springer, Berlin Heidelberg, 1980, 162– 171. N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans AMS 47 (1940), 323– 392.. N. Dunford and J. Schwartz, Linear Operators. Part I. General Theory, Wiley Interscience, New York, 1958. R. Elliot, Stochastic Calculus and Applications, Springer, New York, 1982. D. L. Fisk, Quasimartingales, Trans AMS 120 (1965), 369– 389.. H. Fölmer, Quasimartingales à deux indices, CRAS, Paris 288 (1979), 61– 63.. B. Gravereaux and J. Pellaumail, Formule d'Itô des processus à valeurs dans des espaces de Banach, Ann. Inst. H. Poincaré 10 (1974), 399– 422.. M. Gowurin, Über die Stieltjessche Integration abstrakter Funktionen, Fund. Math. 27 (1936), 255– 268.. M. Green, Planar Stochastic Integration Relative to Quasimartingales, Real and Stochastic Analysis, CRC, Boca Raton, FL, (1997), 65– 157. P. R. Halmos, Measure Theory, Van Nostrand, New York, 1950. A. and C. Ionescu Tulcea, Topics in the Theory of Lifting, Springer, New York, 1969. G. Kallianpur, Stochastic Filtering Theory, Springer, New York, 1980. N. Karoui and S. Méléard, Martingale measures and stochastic calculus, Prob. Theory and Related Fields 84 (1990), 83– 101.. I. Kluvanek, On the theory of vector measures I, Mat. Fyz. Časopis 11 (1961), 173– 192.. I. Kluvanek, On the theory of vector measures II, Mat. Fyz. Časopis 11 (1961), 76– 81.. I. Kluvanek, Completion of vector measures, Rev. Roumaine Math. Pures Appl. 12 (1967), 1483– 1488.. H. Kunita, Stochastic integrals based on martingales taking their values in Hilbert spaces, Nagoya Math. J. 38 (1970), 41– 52.. H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209– 245.. A.U. Kussmaul, Stochastic Integration and Generalized Martingales, Pittman, London, 1977. A.U. Kussmaul, Regularität und Stochastische Integration von Semi-martingalen mit Werten in einen Banach Raum, Dissertation, Stuttgart, 1978. S. Kwapien, On Banach spaces containing c0, Studia Math. 52 (1974), 187– 188.. Ch. Lindsey, Two parameter stochastic processes with finite variation, PhD Dissertation, University of Florida, 1988. M. Métivier, Semimartingales, de Gruyter, Berlin, 1982. M. Métivier and J. Pellaumail, Stochastic Integration, Academic Press, New York, 1980. M. Métivier and J. Pellaumail, On Doleans-Follmer's measure for quasi-martingales, Illinois J. Math. 17 (1975), 491– 504.. P.A. Meyer, Théorie élémentaire des processus à deux indices, Lecture Notes 863, Springer, Berlin Heidelberg, 1981, pp. 1– 39. J. Neveu, Martingales à Temps Discret, Masson, Paris, 1972. J. Neveu, Processus Aléatoires Gaussiens, Les Presses de l'Univ. de Montreal, 1968. O. M. Nikodym, Sur la généralisation des intégrales de M. J. Radon, Fund. Math. 15 (1930), 131– 179.. O. M. Nikodym, Sur les suites convergentes de fonctions parfaitement additives d'ensemble abstrait, Monatshefte Math. Phys. 40 (1933), 427– 432.. S. Orey, F-processes, Proc. 5th Berkeley Symposium on Math. Statistics and Prob. II, Vol I, Univ. of California Press, Berkeley, CA, 1965, 301– 314. J. Pellaumail, Sur l'Intégrale Stochastique et la Décomposition de Doob-Meyer, SMF, Asterisque 9 (1973). B. J. Pettis, On integration in vector spaces, Trans AMS 44 (1938), 277– 304.. R. S. Phillips, On linear transformations, Trans. AMS 48 (1940), 516– 541.. M. Pratelli, Intégration Stochastique et Géometrie des espaces de Banach, Lecture Notes, Seminaire de Prob., Springer, Berlin Heidelberg, 1988. P. Protter, Stochastic Integration and Differential Equations, Springer, New York, 1990. J. Radon, Über linear Funktional Transformationen und Funktional Gleichungen, S-B Akad. Wiss. Wien 128 (1919), 1083– 1121.. E. Radu, Mesures Stieltjes vectorielles sur ℝn, Bull. Math. Soc. Sci. Math. Roumanie 9 (1965), 129– 136.. K. M. Rao, On decomposition theorems of Meyer, Math. Scand. 24 (1969), 66– 78.. K. M. Rao, Quasimartingales, Math. Scand. 24 (1969), 79– 92.. M. M. Rao, Decomposition of vector measures, Proc. Nat. Acad. Sci. USA 15 (1964), 771– 774. M. M. Rao, Stochastic Processes and Integration, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1979. M. M. Rao, Foundations of Stochastic Analysis, Academic Press, New York, 1981. M. M. Rao, Stochastic Integration: a unified approach, CRAS, Paris 314 (1992), 629– 633.. M. M. Rao, Stochastic Processes: General Theory, Kluwer Academic Pub., Dordrecht, the Nederlands, 1995. L. Stoica, On two parameter semimartingales, ZW 45 (1978), 257– 258.. J. Walsh, Martingales with a Multidimensional Parameter and Stochastic Integrals in the Plane, Cours de 3e Cycle, Paris VI, 1977. J. Walsh, Convergence and regularity of multiparameter strong martingales, ZW 46 (1979), 177– 192.. J. Walsh, An Introduction to Stochastic Partial Differential Equations, Lecture Notes 1180, Ecole d'Eté de Prob. de Saint Flour XIV, Springer, Berlin Heidelberg, 1985, 265– 439. M. Yor, Sur les intégrales stochastiques à valeurs dans un espace de Banach, CRAS Paris 277 (1973), 467– 469.. M. Yor, Sur les intégrales stochastiques à valeurs dans un espace de Banach, Ann. Inst. H. Poincaré X (1974), 31– 36. Vector Integration and Stochastic Integration in Banach Spaces ReferencesRelatedInformation" @default.
- W4253248322 created "2022-05-12" @default.
- W4253248322 date "2000-01-21" @default.
- W4253248322 modified "2023-10-17" @default.
- W4253248322 title "References" @default.
- W4253248322 cites W1668826802 @default.
- W4253248322 cites W1964836112 @default.
- W4253248322 cites W1972439526 @default.
- W4253248322 cites W1987990274 @default.
- W4253248322 cites W1990566411 @default.
- W4253248322 cites W2008350030 @default.
- W4253248322 cites W2009450942 @default.
- W4253248322 cites W2013641432 @default.
- W4253248322 cites W2018481203 @default.
- W4253248322 cites W2049176971 @default.
- W4253248322 cites W205460848 @default.
- W4253248322 cites W2063190199 @default.
- W4253248322 cites W2069129170 @default.
- W4253248322 cites W2071570192 @default.
- W4253248322 cites W2072328878 @default.
- W4253248322 cites W2079045951 @default.
- W4253248322 cites W2088470750 @default.
- W4253248322 cites W2320827036 @default.
- W4253248322 cites W2324138229 @default.
- W4253248322 cites W2530373040 @default.
- W4253248322 cites W4205302168 @default.
- W4253248322 cites W4245159036 @default.
- W4253248322 cites W4255034261 @default.
- W4253248322 cites W571027346 @default.
- W4253248322 cites W591296147 @default.
- W4253248322 cites W594040719 @default.
- W4253248322 cites W935417518 @default.
- W4253248322 cites W956452060 @default.
- W4253248322 cites W979524986 @default.
- W4253248322 cites W1967422111 @default.
- W4253248322 cites W2043828674 @default.
- W4253248322 cites W2051332817 @default.
- W4253248322 cites W2198869806 @default.
- W4253248322 cites W2335388759 @default.
- W4253248322 doi "https://doi.org/10.1002/9781118033012.refs" @default.
- W4253248322 hasPublicationYear "2000" @default.
- W4253248322 type Work @default.
- W4253248322 citedByCount "0" @default.
- W4253248322 crossrefType "other" @default.
- W4253248322 hasConcept C41008148 @default.
- W4253248322 hasConceptScore W4253248322C41008148 @default.
- W4253248322 hasLocation W42532483221 @default.
- W4253248322 hasOpenAccess W4253248322 @default.
- W4253248322 hasPrimaryLocation W42532483221 @default.
- W4253248322 hasRelatedWork W1596801655 @default.
- W4253248322 hasRelatedWork W2130043461 @default.
- W4253248322 hasRelatedWork W2350741829 @default.
- W4253248322 hasRelatedWork W2358668433 @default.
- W4253248322 hasRelatedWork W2376932109 @default.
- W4253248322 hasRelatedWork W2382290278 @default.
- W4253248322 hasRelatedWork W2390279801 @default.
- W4253248322 hasRelatedWork W2748952813 @default.
- W4253248322 hasRelatedWork W2899084033 @default.
- W4253248322 hasRelatedWork W2530322880 @default.
- W4253248322 isParatext "false" @default.
- W4253248322 isRetracted "false" @default.
- W4253248322 workType "other" @default.