Matches in SemOpenAlex for { <https://semopenalex.org/work/W4253305902> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4253305902 endingPage "1535" @default.
- W4253305902 startingPage "1535" @default.
- W4253305902 abstract "Abstract We consider the problem of model selection and accounting for model uncertainty in high-dimensional contingency tables, motivated by expert system applications. The approach most used currently is a stepwise strategy guided by tests based on approximate asymptotic P values leading to the selection of a single model; inference is then conditional on the selected model. The sampling properties of such a strategy are complex, and the failure to take account of model uncertainty leads to underestimation of uncertainty about quantities of interest. In principle, a panacea is provided by the standard Bayesian formalism that averages the posterior distributions of the quantity of interest under each of the models, weighted by their posterior model probabilities. Furthermore, this approach is optimal in the sense of maximizing predictive ability. But this has not been used in practice, because computing the posterior model probabilities is hard and the number of models is very large (often greater than 1011). We argue that the standard Bayesian formalism is unsatisfactory and propose an alternative Bayesian approach that, we contend, takes full account of the true model uncertainty by averaging over a much smaller set of models. An efficient search algorithm is developed for finding these models. We consider two classes of graphical models that arise in expert systems: the recursive causal models and the decomposable log-linear models. For each of these, we develop efficient ways of computing exact Bayes factors and hence posterior model probabilities. For the decomposable log-linear models, this is based on properties of chordal graphs and hyper-Markov prior distributions and the resultant calculations can be carried out locally. The end product is an overall strategy for model selection and accounting for model uncertainty that searches efficiently through the very large classes of models involved. Three examples are given. The first two concern data sets that have been analyzed by several authors in the context of model selection. The third addresses a urological diagnostic problem. In each example, our model averaging approach provides better out-of-sample predictive performance than any single model that might reasonably have been selected." @default.
- W4253305902 created "2022-05-12" @default.
- W4253305902 creator A5018667469 @default.
- W4253305902 creator A5064414755 @default.
- W4253305902 date "1994-12-01" @default.
- W4253305902 modified "2023-10-05" @default.
- W4253305902 title "Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window" @default.
- W4253305902 doi "https://doi.org/10.2307/2291017" @default.
- W4253305902 hasPublicationYear "1994" @default.
- W4253305902 type Work @default.
- W4253305902 citedByCount "123" @default.
- W4253305902 countsByYear W42533059022012 @default.
- W4253305902 countsByYear W42533059022013 @default.
- W4253305902 countsByYear W42533059022014 @default.
- W4253305902 countsByYear W42533059022016 @default.
- W4253305902 countsByYear W42533059022017 @default.
- W4253305902 countsByYear W42533059022018 @default.
- W4253305902 countsByYear W42533059022019 @default.
- W4253305902 countsByYear W42533059022020 @default.
- W4253305902 countsByYear W42533059022021 @default.
- W4253305902 countsByYear W42533059022022 @default.
- W4253305902 crossrefType "journal-article" @default.
- W4253305902 hasAuthorship W4253305902A5018667469 @default.
- W4253305902 hasAuthorship W4253305902A5064414755 @default.
- W4253305902 hasConcept C107673813 @default.
- W4253305902 hasConcept C11413529 @default.
- W4253305902 hasConcept C142291917 @default.
- W4253305902 hasConcept C154945302 @default.
- W4253305902 hasConcept C155846161 @default.
- W4253305902 hasConcept C160234255 @default.
- W4253305902 hasConcept C191413810 @default.
- W4253305902 hasConcept C33923547 @default.
- W4253305902 hasConcept C41008148 @default.
- W4253305902 hasConcept C57830394 @default.
- W4253305902 hasConcept C93959086 @default.
- W4253305902 hasConceptScore W4253305902C107673813 @default.
- W4253305902 hasConceptScore W4253305902C11413529 @default.
- W4253305902 hasConceptScore W4253305902C142291917 @default.
- W4253305902 hasConceptScore W4253305902C154945302 @default.
- W4253305902 hasConceptScore W4253305902C155846161 @default.
- W4253305902 hasConceptScore W4253305902C160234255 @default.
- W4253305902 hasConceptScore W4253305902C191413810 @default.
- W4253305902 hasConceptScore W4253305902C33923547 @default.
- W4253305902 hasConceptScore W4253305902C41008148 @default.
- W4253305902 hasConceptScore W4253305902C57830394 @default.
- W4253305902 hasConceptScore W4253305902C93959086 @default.
- W4253305902 hasIssue "428" @default.
- W4253305902 hasLocation W42533059021 @default.
- W4253305902 hasOpenAccess W4253305902 @default.
- W4253305902 hasPrimaryLocation W42533059021 @default.
- W4253305902 hasRelatedWork W12931395 @default.
- W4253305902 hasRelatedWork W2155216128 @default.
- W4253305902 hasRelatedWork W2896287971 @default.
- W4253305902 hasRelatedWork W2978031272 @default.
- W4253305902 hasRelatedWork W2981461142 @default.
- W4253305902 hasRelatedWork W3045699787 @default.
- W4253305902 hasRelatedWork W3163707242 @default.
- W4253305902 hasRelatedWork W4287706009 @default.
- W4253305902 hasRelatedWork W4289436932 @default.
- W4253305902 hasRelatedWork W4292450725 @default.
- W4253305902 hasVolume "89" @default.
- W4253305902 isParatext "false" @default.
- W4253305902 isRetracted "false" @default.
- W4253305902 workType "article" @default.