Matches in SemOpenAlex for { <https://semopenalex.org/work/W4253323475> ?p ?o ?g. }
- W4253323475 endingPage "438" @default.
- W4253323475 startingPage "431" @default.
- W4253323475 abstract "Free Access References Amirnaser Yazdani, University of Western Ontario, CanadaSearch for more papers by this authorReza Iravani, University of Toronto, CanadaSearch for more papers by this author Book Author(s):Amirnaser Yazdani, University of Western Ontario, CanadaSearch for more papers by this authorReza Iravani, University of Toronto, CanadaSearch for more papers by this author First published: 25 January 2010 https://doi.org/10.1002/9780470551578.refs AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat REFERENCES N. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, 2000. Google Scholar Y. H. Song and A. T. Johns, Flexible AC Transmission Systems (FACTS), IEE, 1999. CrossrefGoogle Scholar E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Perez, and C. Angeles-Camacho, FACTS: Modelling and Simulation in Power Networks, Wiley, 2004. Wiley Online LibraryGoogle Scholar E. Acha, V. G. Agelidis, O. Anaya-Lara, and T. J. E. Miller, Power Electronic Control in Electrical Systems, Newnes, 2002. Google Scholar R. M. Mathur and R. Varma, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, Wiley/IEEE, 2002. CrossrefGoogle Scholar X. P. Zhang, C. Rehtanz, and B. Pal, Flexible AC Transmission Systems: Modelling and Control, Springer-Verlag, 2006. Google Scholar N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78– 94, July/August 2007. CrossrefWeb of Science®Google Scholar H. Akagi, E. H. Watanabe, and M. Arades, Instantaneous Power Theory and Applications to Power Conditioning, Wiley/IEEE, 2007. Wiley Online LibraryGoogle Scholar T. Larsson, A. Edris, D. Kidd, and F. Aboytes, “Eagle Pass Back-to-Back Tie: A Dual Purpose Application of Voltage Source Converter Technology,” IEEE Power Engineering Society Summer Meeting, vol. 3, pp. 1686– 1691, July 2001. CrossrefGoogle Scholar J. Arillaga, High Voltage Direct Current Transmission, IEE Power Engineering Series 6, Peter Peregrinus Ltd., 1983. Google Scholar V. Sood, HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Kluwer Academic Publishers, 2004. Google Scholar O. Wasynczuk and N. A. Anwah, “Modeling and Dynamic Performance of a Self-Commutated Photovoltaic Inverter System,” IEEE Transactions on Energy Conversion, vol. 4, no. 3, pp. 322– 328, September 1989. CrossrefWeb of Science®Google Scholar M. N. Marwali and A. Keyhani, “Control of Distributed Generation Systems. Part I. Voltages and Currents Control,” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1541– 1550, November 2004. CrossrefWeb of Science®Google Scholar K. Satoh and M. Yamamoto, “The Present State of the Art in High Power Semiconductor Devices,” Proceedings of the IEEE, vol. 89, no. 6, pp. 813– 821, July 2001. CrossrefWeb of Science®Google Scholar B. J. Baliga, “The Future of Power Semiconductor Device Technology,” Proceedings of the IEEE, vol. 89, no. 6, pp. 822– 832, July 2001. CrossrefCASWeb of Science®Google Scholar N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, Converters, Applications, and Design, 3rd edition, Wiley, 2003. Google Scholar B. Wu, High-Power Converters and AC Drives, Wiley/IEEE, 2006. Wiley Online LibraryGoogle Scholar A. Alesina and M. G. B. Venturini, “Analysis and Design of Optimum-Amplitude Nine-Switch Direct AC–AC Converters,” IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 101– 112, January 1989. CrossrefWeb of Science®Google Scholar S. B. Dewan and A. Straughn, Power Semiconductor Circuits, Wiley, 1974. Google Scholar D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, Wiley/IEEE, 2003. CrossrefGoogle Scholar M. Saeedifard, H. Nikkhajoei, R. Iravani, and A. Bakhshai, “A Space Vector Modulation Approach for a Multimodule HVDC Converter System,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1643– 1654, July 2007. CrossrefWeb of Science®Google Scholar M. Hagiwara, H. Fujita, and H. Akagi, “Performance of a Self-Commutated BTB HVDC Link System Under a Single-Line-to-Ground Fault Condition,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 278– 285, January 2003. CrossrefWeb of Science®Google Scholar C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L. Gyugyi, T.W. Cease, and A. Edris, “Development of ±100 MVAR Static Condenser for Voltage Control of Transmission Systems,” IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1486– 1493, July 1995. CrossrefWeb of Science®Google Scholar J. Holtz, “Pulsewidth modulation: A Survey,” IEEE Transactions on Industrial Electronics, vol. 39, no. 5, pp. 410– 420, December 1992. CrossrefWeb of Science®Google Scholar H. W. Van Der Broeck, H. Skudelny, and G. V. Stanke, “Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors,” IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142– 150, January/February 1988. CrossrefWeb of Science®Google Scholar R. Wu, S. B. Dewan, and G. R. Slemon, “Analysis of an AC-to-DC Voltage Source Converter Using PWM with Phase and Amplitude Control,” IEEE Transactions on Industry Applications, vol. 27, pp. 355– 364, March/April 1991. CrossrefWeb of Science®Google Scholar A. Nabavi Niaki and M. R. Iravani, “Steady-State and Dynamic Models of Unified Power Flow Controller (UPFC) for Power System Studies,” IEEE Transactions on Power Systems, vol. 11, pp. 1937– 1942, November 1996. CrossrefWeb of Science®Google Scholar J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamic Systems, Springer-Verlag, 1985. CrossrefGoogle Scholar H. A. Khalil, Nonlinear Systems, 3rd edition, Prentice-Hall, 2002. Web of Science®Google Scholar J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Principles of Power Electronics, Addison-Wesley, 1991. Google Scholar P. T. Krein, J. Bentsman, R. M. Bass, and B. L. Lesieutre, “On the Use of Averaging for the Analysis of Power Electronic Systems,” IEEE Transactions on Power Electronics, vol. 5, pp. 182– 190, April 1990. CrossrefWeb of Science®Google Scholar R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd edition, Kluwer Academic Publishers, 2001. CrossrefGoogle Scholar E. Davison, “The Robust Control of a Servomechanism Problem for Linear Time-Invariant Multivariable Systems,” IEEE Transactions on Automatic Control, vol. AC-21, no. 1, pp. 25– 34, February 1976. CrossrefWeb of Science®Google Scholar W. M. Wonham, “Towards an Abstract Internal Model Principle,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-6, no. 11, pp. 735– 740, November 1976. CrossrefWeb of Science®Google Scholar P. J. Antsaklis and O. R. Gonzalez, “Compensator Structure and Internal Models in Tracking and Regulation,” Proceedings of 23rd Conference on Decision and Control, Las Vegas, NV, pp. 634– 635, December 1984. CrossrefGoogle Scholar G. F. Franklin and A. E. Naeini, “Design of Ripple-Free Multivariable Robust Servomechanisms,” Proceedings of 23rd Conference on Decision and Control, Las Vegas, NV, pp. 1709– 1714, December 1984. Google Scholar J. J. D'Azzo and C. H. Houpis, Linear Control System Analysis and Design: Conventional and Modern, 4th edition, McGraw-Hill, 1995. Google Scholar K. Ogata, Modern Control Engineering, 4th edition, Prentice-Hall, 2001. Google Scholar X. Yuan, W. Merk, H. Stemler, and J. Allmeling, “Stationary-Frame Generalized Integrators for Current Control of Active Power Filters with Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions,” IEEE Transactions on Industry Applications, vol. 38, no. 2, pp. 523– 532, March/April 2002. CrossrefWeb of Science®Google Scholar D. N. Zmood and D. G. Holmes, “Stationary Frame Current Regulation of PWM Inverters with Zero Steady-State Error,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 814– 822, May 2003. CrossrefWeb of Science®Google Scholar H. Akagi, Y. Kanazawa, and A. Nabae, “Instantaneous Reactive Power Compensators Comprising Switching Devices Without Energy Storage Components,” IEEE Transactions on Industry Applications, vol. IA-20, no. 3, pp. 625– 630, May/June 1984. CrossrefWeb of Science®Google Scholar P. Kundur, Power System Stability and Control, McGraw-Hill, 1994. Google Scholar W. Leonhard, Control of Electrical Drives, 3rd edition, Springer-Verlag, 2001. CrossrefGoogle Scholar L. Angquist and L. Lindberg, “Inner Phase Angle Control of Voltage Source Converter in High Power Applications,” IEEE Power Electronics Specialists Conference PESC 91, pp. 293– 298, June 1991. CrossrefWeb of Science®Google Scholar L. Xu, V. G. Agelidis, and E. Acha, “Development Considerations of DSP-Controlled PWM VSC-Based STATCOM,” IEE Proceedings: Electric Power Application, vol. 148, no. 5, pp. 449– 455, September 2001. CrossrefWeb of Science®Google Scholar A. R. Bergen, Power System Analysis, Prentice-Hall, 1986. Google Scholar M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of Parallel Connected Inverters in Standalone AC Supply Systems,” IEEE Transactions on Industry Applications, vol. 29, no. 1, pp. 136– 143, January/February 1993. CrossrefWeb of Science®Google Scholar M. H. Rashid, Power Electronics, Circuits, Devices, and Applications, 3rd edition, Pearson Prentice-Hall, 2003. Google Scholar S. Chung, “A Phase Tracking System for Three Phase Utility Interface Inverters,” IEEE Transactions on Power Electronics, vol. 15, pp. 431– 438, May 2000. CrossrefWeb of Science®Google Scholar A. B. Plunkett and F. G. Turnbull, “Load-Commutated Inverter/Synchronous Motor Drive Without a Shaft Position Sensor,” IEEE Transactions on Industry Applications, vol. IA-15, no. 1, pp. 63– 71, January/February 1979. CrossrefWeb of Science®Google Scholar R. Wu and G. R. Slemon, “A Permanent Magnet Motor Drive Without a Shaft Sensor,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 1005– 1011, September/October 1991. CrossrefWeb of Science®Google Scholar T. Noguchi, K. Yamada, S. Kondo, and I. Takahashi, “Initial Rotor Position Estimation Method of Sensorless PM Synchronous Motor with No Sensitivity to Armature Resistance,” IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 118– 125, February 1998. CrossrefWeb of Science®Google Scholar P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery, IEEE Press, 1995. Google Scholar P. Vas, Vector Control of AC Machines, Oxford University Press, 1990. Google Scholar K. Thorborg, Power Electronics, Prentice-Hall, 1988. Google Scholar J. S. Lai and F. Z. Peng, “Multilevel Converters: A New Breed of Power Converters,” IEEE Transactions on Industry Applications, vol. 32, pp. 509– 517, May/June 1996. CrossrefWeb of Science®Google Scholar J. Rodriguez, J. Pontt, G. Alzamora, N. Becker, O. Einenkel, and A. Weinstein, “Novel 20-MW Downhill Conveyor System Using Three-Level Converters,” IEEE Transactions on Industrial Electronics, vol. 49, pp. 1093– 1100, October 2002. CrossrefWeb of Science®Google Scholar J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Control, and Applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724– 738, August 2002. CrossrefWeb of Science®Google Scholar A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Transactions on Industry Applications, vol. IA-17, pp. 518– 523, September/October 1981. CrossrefWeb of Science®Google Scholar R. Sommer, A. Mertens, C. Brunotte, and G. Trauth, “Medium Voltage Drive System with NPC Three-Level Inverter Using IGBTs,” IEEE PWM Medium Voltage Drives Seminar, pp. 3/1– 3/5, May 11, 2000. Google Scholar A. Yazdani and R. Iravani, “A Generalized State-Space Averaged Model of the Three-Level NPC Converter for Systematic DC-Voltage-Balancer and Current-Controller Design,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1105– 1114, April 2005. CrossrefWeb of Science®Google Scholar D. H. Lee, S. R. Lee, and F. C. Lee, “An Analysis of Midpoint Balance for the Neutral-Point-Clamped Three-Level VSI,” IEEE Power Electronics Specialists Conference, PESC98, vol. 1, pp. 193– 199, May 17–22, 1998. Web of Science®Google Scholar C. Newton and M. Sumner, “A Novel Arrangement for Balancing the Capacitor Voltages of a Five-Level Diode Clamped Inverter,” IEE Power Electronics and Variable Speed Drives, no. 456, pp. 465– 470, September 21–23, 1998. CrossrefWeb of Science®Google Scholar M. K. Mishra, A. Joshi, and A. Ghosh, “Control Schemes for Equalization of Capacitor Voltages in Neutral Clamped Shunt Compensator,” IEEE Transactions on Power Delivery, vol. 18, pp. 538– 544, April 2003. CrossrefWeb of Science®Google Scholar C. Newton and M. Sumner, “Neutral Point Control for Multi-Level inverters: Theory, Design and Operational Limitations,” IEEE Industry Application Society Annual Meeting, pp. 1336– 1343, October 5–9, 1997. Google Scholar G. Scheuer and H. Stemmler, “Analysis of a 3-Level-VSI Neutral-Point-Control for Fundamental Frequency Modulated SVC-Applications,” IEE AC and DC Power Transmission, no. 423, pp. 303– 310, April 29–May 3, 1996. CrossrefGoogle Scholar C. Osawa, Y. Matsumoto, T. Mizukami, and S. Ozaki, “A State-Space Modeling and a Neutral-Point Voltage Control for an NPC Power Converter,” Power Conversion Conference, vol. 1, pp. 225– 230, August 3–6, 1997. CrossrefGoogle Scholar M. P. Kazmierkowski and L. Malesani, “Current-Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey,” IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691– 703, October 1998. CrossrefWeb of Science®Google Scholar C. D. Schauder and R. Caddy, “Current Control of Voltage-Source Inverters for Fast Four-Quadrant Drive Performance,” IEEE Transactions on Industrial Electronics, vol. IA-18, pp. 163– 171, March/April 1982. Web of Science®Google Scholar J. A. Houldsworth and D. A. Grant, “The Use of Harmonic Distortion to Increase the Output Voltage of a Three-Phase PWM Inverter,” IEEE Transactions on Industry Applications, vol. IA-20, pp. 1224– 1228, September/October 1984. CrossrefWeb of Science®Google Scholar M. Mohaddes, D. P. Brandt, and K. Sadek, “Analysis and Elimination of Third Harmonic Oscillations in Capacitor Voltages of 3-Level Voltage Source converters,” IEEE PES Summer Meeting, vol. 2, pp. 737– 741, July 16–20, 2000. Google Scholar A. Yazdani and R. Iravani, “An Accurate Model for the DC-Side Voltage Control of the Neutral Point Diode Clamped Converter,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 185– 193, January 2006. CrossrefWeb of Science®Google Scholar R. Pena, R. Cardenas, R. Blasco, G. Asher, and J. Clare, “A Cage Induction Generator Using Back to Back PWM Converters for Variable Speed Grid Connected Wind Energy System,” IEEE Industrial Electronics Conference, IECON'01, vol. 2, pp. 1376– 1381, 2001. Google Scholar C. K. Sao, P. W. Lehn, M. R. Iravani, and J. A. Martinez, “A Benchmark System for Digital Time-Domain Simulation of a Pulse-Width-Modulated D-STATCOM,” IEEE Transactions on Power Delivery, vol. 17, pp. 1113– 1120, October 2002. CrossrefWeb of Science®Google Scholar Y. Ye, M. Kazerani, and V. H. Quintana, “Modeling, Control, and Implementation of Three-Phase PWM Converters,” IEEE Transactions on Power Electronics, vol. 18, pp. 857– 864, May 2003. CrossrefWeb of Science®Google Scholar P. W. Lehn and M. R. Iravani, “Experimental Evaluation of STATCOM Closed-Loop Dynamics,” IEEE Transactions on Power Delivery, vol. 13, pp. 1378– 1384, October 1998. CrossrefWeb of Science®Google Scholar T. M. Rowan and R. J. Kerkman, “A New Synchronous Current Regulator and an Analysis of Current-Regulated PWM Inverters,” IEEE Transactions on Industry Applications, vol. IA-22, no. 4, pp. 678– 690, March/April 1986. CrossrefWeb of Science®Google Scholar V. Kaura and V. Blasko, “Operation of a Phase Locked Loop System Under Distorted Utility Conditions,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 58– 63, January/February 1997. CrossrefWeb of Science®Google Scholar J. Svensson, “Synchronization Methods for Grid-Connected Voltage Source Converters,” IEE Proceedings: Generation, Transmission, and Distribution, vol. 148, no. 3, pp. 229– 235, May 2001. CrossrefWeb of Science®Google Scholar L. G. B. Rolim, D. R. da Costa, and M. Aredes, “Analysis and Software Implementation of a Robust Synchronizing PLL Circuit Based on pq Theory,” IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1919– 1926, December 2006. CrossrefWeb of Science®Google Scholar D. A. Paice, Power Electronics Converter Harmonics: Multipulse Methods for Clean Power, Wiley/IEEE Press, 1999. CrossrefGoogle Scholar C. Schauder and H. Mehta, “Vector Analysis and Control of Advanced Static VAR Compensators,” IEE Proceedings C, vol. 140, pp. 299– 306, July 1993. Web of Science®Google Scholar A. Yazdani, “Control of an Islanded Distributed Energy Resource Unit with Load Compensating Feed-Forward,” IEEE Power Engineering Society General Meeting, 7 pp. July 20–24, 2008. CrossrefGoogle Scholar M. B. Delghavi and A. Yazdani, “A Control Strategy for Islanded Operation of a Distributed Resource (DR) Unit,” IEEE Power and Energy Society General Meeting, 8 pp. July 26– 30, 2009. Google Scholar H. Karimi, A. Yazdani, and R. Iravani, “Negative Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Unit,” IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 298– 307, January 2008. CrossrefWeb of Science®Google Scholar R. Pena, J. C. Clare, and G. M. Asher, “A Doubly-Fed Induction Generator Using Back-to-Back PWM Converters Supplying an Isolated Load from a Variable Speed Wind Turbine,” IEE Proceedings on Power Applications, vol. 143, pp. 380– 387, September 1996. CrossrefWeb of Science®Google Scholar S. Muller, M. Deicke, and R. W. De Donker, “Adjustable Speed Generators for Wind Turbines Based on Doubly-Fed Induction Machines and 4-Quadrant IGBT Converters Linked to the Rotor,” IEEE Industry Applications Magazine, vol. 8, no. 3, pp. 26– 33, May/June 2002. CrossrefWeb of Science®Google Scholar R. Datta and V. T. Ranganathan, “Variable-Speed Wind-Power Generation Using Doubly-Fed Wound-Rotor Induction Machine: A Comparison with Alternative Schemes,” IEEE Transactions on Energy Conversion, vol. 17, no. 3, pp. 414– 421, September 2002. CrossrefWeb of Science®Google Scholar D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, 1996. Google Scholar B. K. Bose, Power Electronics and Variable Frequency Drives, IEEE Press, 1997. Google Scholar R. Cardenas, R. Pena, G. M. Asher, J. Clare, and R. Blasco-Gimenez, “Control Strategies for Power Smoothing Using a Flywheel Driven by a Sensorless Vector-Controlled Induction Machine Operating in a Wide Speed Range,” IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 603– 614, June 2004. CrossrefWeb of Science®Google Scholar T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior PM Synchronous Motors for Adjustable-Speed Drives,” IEEE Transactions on Industry Applications, vol. 22, no. 4, pp. 738– 747, July/August 1986. CrossrefWeb of Science®Google Scholar B. K. Bose, “A High-Performance Inverter-Fed Drive System of an Interior Permanent Magnet Synchronous Machine,” IEEE Transactions on Industry Applications, vol. 24, no. 6, pp. 987– 997, November/December 1988. CrossrefWeb of Science®Google Scholar S. Y. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of Operating Limits for Permanent Magnet Motor by Current Vector Control Considering Inverter Capacity,” IEEE Transactions on Industry Applications, vol. 26, no. 5, pp. 866– 871, September/October 1990. CrossrefWeb of Science®Google Scholar R. Mihalic, P. Zunko, I. Papic, and D. Povh, “Improvement of Transient Stability by Insertion of FACTS Devices,” IEEE/NTUA Proceedings of Athens Power Tech Conference, APT 93, vol. 2, pp. 521– 525, September 1993. CrossrefGoogle Scholar J. F. Gronquist, W. A. Sethares, F. L. Alvarado, and R. H. Lasseter, “Power Oscillation Damping Control Strategies for FACTS Devices Using Locally Measurable Quantities,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1598– 1605, August 1995. CrossrefWeb of Science®Google Scholar E. Stacey, T. Lemak, L. Gyugyi, T. W. Cease, and A. Edris, “Operation of −100 MVAr TVA STATCON,” IEEE Transactions on Power Delivery, vol. 12, no. 4, pp. 1805– 1811, October 1997. CrossrefWeb of Science®Google Scholar M. Noroozian, A. Edris, D. Kidd, and A. J. F. Keri, “The Potential Use of Voltage-Sourced Converter-Based Back-to-Back Tie in Load Restoration,” IEEE Transactions on Power Delivery, vol. 18, pp. 1416– 1421, October 2003. CrossrefWeb of Science®Google Scholar G. C. Paap, “Symmetrical Components in the Time-Domain and Their Applications to Power Network Calculations,” IEEE Transactions on Power Systems, vol. 15, pp. 522– 528, May 2000. CrossrefWeb of Science®Google Scholar L. Moran, P. D. Ziogas, and G. Joos, “Design Aspects of Synchronous PWM Rectifier-Inverter Systems Under Unbalanced Input Voltage Conditions,” IEEE Transactions on Industrial Electronics, vol. 28, no. 6, pp. 1286– 1293, November/December 1992. Web of Science®Google Scholar T. Sun, Z. Chen, and F. Blaabjerg, “Flicker Study on Variable Speed Wind Turbines with Doubly-Fed Induction Generators,” IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 896– 905, December 2005. CrossrefWeb of Science®Google Scholar A. Yazdani and R. Iravani, “A Neutral-Point Clamped Converter System for Direct-Drive Variable-Speed Wind Power Unit,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 596– 607, June 2006. CrossrefWeb of Science®Google Scholar M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid,” IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 130– 135, March 2006. CrossrefWeb of Science®Google Scholar P. M. Anderson and A. Bose, “Stability Simulations of Wind Turbine Systems,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, pp. 3791– 3795, December 1983. CrossrefWeb of Science®Google Scholar M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics, Selected Problems, Academic Press, 2002. Google Scholar S. Heier, Grid Integration of Wind Energy Conversion Systems, 2nd edition, Wiley, 2006. Google Scholar J. G. Slootweg, H. Polinder, and W. L. Kling, “Representing Wind Turbine Electrical Generating Systems in Fundamental Frequency Simulations,” IEEE Transactions on Energy Conversion, vol. 18, no. 4, pp. 516– 524, December 2003. CrossrefWeb of Science®Google Scholar Y. D. Song and B. Dhinakaran, “Nonlinear Variable Speed Control of Wind Turbines,” IEEE Proceedings of International Conference on Control Applications, pp. 814– 819, August 1999. Web of Science®Google Scholar G. R. Slemon, “Modelling of Induction Machines for Electric Drives,” IEEE Industry Application Society Annual Meeting, pp. 111– 115, 1988. Google Scholar Voltage‐Sourced Converters in Power Systems: Modeling, Control, and Applications ReferencesRelatedInformation" @default.
- W4253323475 created "2022-05-12" @default.
- W4253323475 date "2010-01-25" @default.
- W4253323475 modified "2023-09-23" @default.
- W4253323475 title "References" @default.
- W4253323475 cites W106711868 @default.
- W4253323475 cites W1490647582 @default.
- W4253323475 cites W1522157229 @default.
- W4253323475 cites W1578476034 @default.
- W4253323475 cites W1591179846 @default.
- W4253323475 cites W1635910236 @default.
- W4253323475 cites W1927216294 @default.
- W4253323475 cites W1958984234 @default.
- W4253323475 cites W1964287508 @default.
- W4253323475 cites W1984966640 @default.
- W4253323475 cites W2002684817 @default.
- W4253323475 cites W2011579856 @default.
- W4253323475 cites W2011779180 @default.
- W4253323475 cites W2014945220 @default.
- W4253323475 cites W2027430434 @default.
- W4253323475 cites W2033097495 @default.
- W4253323475 cites W2048036929 @default.
- W4253323475 cites W2058985433 @default.
- W4253323475 cites W2075997616 @default.
- W4253323475 cites W2094128286 @default.
- W4253323475 cites W2097289434 @default.
- W4253323475 cites W2098057473 @default.
- W4253323475 cites W2099097596 @default.
- W4253323475 cites W2100881295 @default.
- W4253323475 cites W2101216225 @default.
- W4253323475 cites W2101789231 @default.
- W4253323475 cites W2102394272 @default.
- W4253323475 cites W2102476746 @default.
- W4253323475 cites W2104136617 @default.
- W4253323475 cites W2115102890 @default.
- W4253323475 cites W2115834422 @default.
- W4253323475 cites W2120918352 @default.
- W4253323475 cites W2122549813 @default.
- W4253323475 cites W2123743837 @default.
- W4253323475 cites W2127324982 @default.
- W4253323475 cites W2133671213 @default.
- W4253323475 cites W2138015701 @default.
- W4253323475 cites W2138604071 @default.
- W4253323475 cites W2141670775 @default.
- W4253323475 cites W2144081311 @default.
- W4253323475 cites W2148405877 @default.
- W4253323475 cites W2149087996 @default.
- W4253323475 cites W2149619970 @default.
- W4253323475 cites W2150390475 @default.
- W4253323475 cites W2151305160 @default.
- W4253323475 cites W2152359440 @default.
- W4253323475 cites W2153388156 @default.
- W4253323475 cites W2154636565 @default.
- W4253323475 cites W2157413672 @default.
- W4253323475 cites W2157938815 @default.
- W4253323475 cites W2160411150 @default.
- W4253323475 cites W2160830391 @default.
- W4253323475 cites W2160874270 @default.
- W4253323475 cites W2161394815 @default.
- W4253323475 cites W2162156389 @default.
- W4253323475 cites W2167462156 @default.
- W4253323475 cites W2167630521 @default.
- W4253323475 cites W2167824378 @default.
- W4253323475 cites W2168513419 @default.
- W4253323475 cites W2172216452 @default.
- W4253323475 cites W2173224554 @default.
- W4253323475 cites W2266095462 @default.
- W4253323475 cites W2312535884 @default.
- W4253323475 cites W2481685682 @default.
- W4253323475 cites W2507034709 @default.
- W4253323475 cites W267271646 @default.
- W4253323475 cites W3041070869 @default.
- W4253323475 cites W3141456309 @default.
- W4253323475 cites W3152402230 @default.
- W4253323475 cites W4205808100 @default.
- W4253323475 cites W4210703827 @default.
- W4253323475 cites W4229976411 @default.
- W4253323475 cites W4233539232 @default.
- W4253323475 cites W4239891485 @default.
- W4253323475 cites W4242021859 @default.
- W4253323475 cites W4247734350 @default.
- W4253323475 cites W4376849732 @default.
- W4253323475 cites W4377077100 @default.
- W4253323475 doi "https://doi.org/10.1002/9780470551578.refs" @default.
- W4253323475 hasPublicationYear "2010" @default.
- W4253323475 type Work @default.
- W4253323475 citedByCount "0" @default.
- W4253323475 crossrefType "other" @default.
- W4253323475 hasConcept C41008148 @default.
- W4253323475 hasConceptScore W4253323475C41008148 @default.
- W4253323475 hasLocation W42533234751 @default.
- W4253323475 hasOpenAccess W4253323475 @default.
- W4253323475 hasPrimaryLocation W42533234751 @default.
- W4253323475 hasRelatedWork W1596801655 @default.
- W4253323475 hasRelatedWork W2130043461 @default.
- W4253323475 hasRelatedWork W2350741829 @default.
- W4253323475 hasRelatedWork W2358668433 @default.
- W4253323475 hasRelatedWork W2376932109 @default.