Matches in SemOpenAlex for { <https://semopenalex.org/work/W4253769146> ?p ?o ?g. }
- W4253769146 endingPage "157" @default.
- W4253769146 startingPage "117" @default.
- W4253769146 abstract "This chapter describes grey wolf optimization (GWO), teaching-learning-based optimization (TLBO), biogeography-based optimization (BBO), krill herd algorithm (KHA), chemical reaction optimization (CRO), and hybrid CRO (HCRO) algorithms to solve both single and multi-objective optimal power flow (MOOPF) and optimal reactive power dispatch (ORPD) problems while satisfying various operational constraints. The proposed HCRO approach along with GWO, TLBO, BBO, KHA, and CRO algorithms are implemented on IEEE 30-bus system to solve four different single objectives: fuel cost minimization, system power loss minimization, voltage stability index minimization, and voltage deviation minimization; two bi-objectives optimization, namely minimization of fuel cost and transmission loss; minimization of fuel cost and voltage profile; and one tri-objective optimization, namely minimization of fuel cost, minimization of transmission losses, and improvement of voltage profile simultaneously. The simulation results clearly suggest that the proposed is able to provide a better solution than other approaches." @default.
- W4253769146 created "2022-05-12" @default.
- W4253769146 date "2018-08-15" @default.
- W4253769146 modified "2023-10-01" @default.
- W4253769146 title "Optimal Power Flow and Optimal Reactive Power Dispatch Using Different Evolutionary Optimization Techniques" @default.
- W4253769146 cites W1481382946 @default.
- W4253769146 cites W1521043110 @default.
- W4253769146 cites W1762308361 @default.
- W4253769146 cites W1803789800 @default.
- W4253769146 cites W1974540077 @default.
- W4253769146 cites W1978378863 @default.
- W4253769146 cites W1991712233 @default.
- W4253769146 cites W1999284878 @default.
- W4253769146 cites W2004117002 @default.
- W4253769146 cites W2004861477 @default.
- W4253769146 cites W2007205642 @default.
- W4253769146 cites W2017963665 @default.
- W4253769146 cites W2018305586 @default.
- W4253769146 cites W2022945555 @default.
- W4253769146 cites W2023305140 @default.
- W4253769146 cites W2038801205 @default.
- W4253769146 cites W2046935750 @default.
- W4253769146 cites W2052178545 @default.
- W4253769146 cites W2053401848 @default.
- W4253769146 cites W2056388720 @default.
- W4253769146 cites W2059934559 @default.
- W4253769146 cites W2067291211 @default.
- W4253769146 cites W2069261196 @default.
- W4253769146 cites W2071255679 @default.
- W4253769146 cites W2079370429 @default.
- W4253769146 cites W2081778768 @default.
- W4253769146 cites W2084208149 @default.
- W4253769146 cites W2091250061 @default.
- W4253769146 cites W2095570364 @default.
- W4253769146 cites W2095797814 @default.
- W4253769146 cites W2109242547 @default.
- W4253769146 cites W2109595293 @default.
- W4253769146 cites W2111805884 @default.
- W4253769146 cites W2112921638 @default.
- W4253769146 cites W2118280326 @default.
- W4253769146 cites W2122540828 @default.
- W4253769146 cites W2125728842 @default.
- W4253769146 cites W2131286857 @default.
- W4253769146 cites W2134482705 @default.
- W4253769146 cites W2134645620 @default.
- W4253769146 cites W2146116618 @default.
- W4253769146 cites W2152322883 @default.
- W4253769146 cites W2153268897 @default.
- W4253769146 cites W2154701302 @default.
- W4253769146 cites W2156511377 @default.
- W4253769146 cites W2161196766 @default.
- W4253769146 cites W2161694265 @default.
- W4253769146 cites W2164591312 @default.
- W4253769146 cites W2164807043 @default.
- W4253769146 cites W2616736911 @default.
- W4253769146 cites W2624568808 @default.
- W4253769146 cites W2764667959 @default.
- W4253769146 cites W2778060382 @default.
- W4253769146 cites W883434633 @default.
- W4253769146 doi "https://doi.org/10.4018/978-1-5225-6971-8.ch004" @default.
- W4253769146 hasPublicationYear "2018" @default.
- W4253769146 type Work @default.
- W4253769146 citedByCount "0" @default.
- W4253769146 crossrefType "book-chapter" @default.
- W4253769146 hasConcept C108755667 @default.
- W4253769146 hasConcept C113608303 @default.
- W4253769146 hasConcept C119599485 @default.
- W4253769146 hasConcept C121332964 @default.
- W4253769146 hasConcept C126255220 @default.
- W4253769146 hasConcept C127413603 @default.
- W4253769146 hasConcept C147764199 @default.
- W4253769146 hasConcept C163258240 @default.
- W4253769146 hasConcept C165801399 @default.
- W4253769146 hasConcept C2779753020 @default.
- W4253769146 hasConcept C33923547 @default.
- W4253769146 hasConcept C41008148 @default.
- W4253769146 hasConcept C62520636 @default.
- W4253769146 hasConcept C761482 @default.
- W4253769146 hasConcept C76155785 @default.
- W4253769146 hasConcept C89227174 @default.
- W4253769146 hasConceptScore W4253769146C108755667 @default.
- W4253769146 hasConceptScore W4253769146C113608303 @default.
- W4253769146 hasConceptScore W4253769146C119599485 @default.
- W4253769146 hasConceptScore W4253769146C121332964 @default.
- W4253769146 hasConceptScore W4253769146C126255220 @default.
- W4253769146 hasConceptScore W4253769146C127413603 @default.
- W4253769146 hasConceptScore W4253769146C147764199 @default.
- W4253769146 hasConceptScore W4253769146C163258240 @default.
- W4253769146 hasConceptScore W4253769146C165801399 @default.
- W4253769146 hasConceptScore W4253769146C2779753020 @default.
- W4253769146 hasConceptScore W4253769146C33923547 @default.
- W4253769146 hasConceptScore W4253769146C41008148 @default.
- W4253769146 hasConceptScore W4253769146C62520636 @default.
- W4253769146 hasConceptScore W4253769146C761482 @default.
- W4253769146 hasConceptScore W4253769146C76155785 @default.
- W4253769146 hasConceptScore W4253769146C89227174 @default.
- W4253769146 hasLocation W42537691461 @default.
- W4253769146 hasOpenAccess W4253769146 @default.