Matches in SemOpenAlex for { <https://semopenalex.org/work/W4253828897> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4253828897 endingPage "896" @default.
- W4253828897 startingPage "896" @default.
- W4253828897 abstract "Abstract Nonparametric maximum likelihood (NPML) is used to estimate regression parameters in a proportional hazards regression model with missing covariates. The NPML estimator is shown to be consistent and asymptotically normally distributed under some conditions. EM type algorithms are applied to solve the maximization problem. Variance estimates of the regression parameters are obtained by a profile likelihood approach that uses EM-aided numerical differentiation. Simulation results indicate that the NPML estimates of the regression parameters are more efficient than the approximate partial likelihood estimates and estimates from complete-case analysis when missing covariates are missing completely at random, and that the proposed method corrects for bias when the missing covariates are missing at random." @default.
- W4253828897 created "2022-05-12" @default.
- W4253828897 creator A5069428148 @default.
- W4253828897 creator A5072262441 @default.
- W4253828897 date "1999-09-01" @default.
- W4253828897 modified "2023-10-13" @default.
- W4253828897 title "Proportional Hazards Regression with Missing Covariates" @default.
- W4253828897 doi "https://doi.org/10.2307/2670005" @default.
- W4253828897 hasPublicationYear "1999" @default.
- W4253828897 type Work @default.
- W4253828897 citedByCount "28" @default.
- W4253828897 countsByYear W42538288972015 @default.
- W4253828897 countsByYear W42538288972019 @default.
- W4253828897 crossrefType "journal-article" @default.
- W4253828897 hasAuthorship W4253828897A5069428148 @default.
- W4253828897 hasAuthorship W4253828897A5072262441 @default.
- W4253828897 hasConcept C105795698 @default.
- W4253828897 hasConcept C119043178 @default.
- W4253828897 hasConcept C149782125 @default.
- W4253828897 hasConcept C152877465 @default.
- W4253828897 hasConcept C185429906 @default.
- W4253828897 hasConcept C33923547 @default.
- W4253828897 hasConcept C50382708 @default.
- W4253828897 hasConcept C74127309 @default.
- W4253828897 hasConcept C83546350 @default.
- W4253828897 hasConcept C9357733 @default.
- W4253828897 hasConceptScore W4253828897C105795698 @default.
- W4253828897 hasConceptScore W4253828897C119043178 @default.
- W4253828897 hasConceptScore W4253828897C149782125 @default.
- W4253828897 hasConceptScore W4253828897C152877465 @default.
- W4253828897 hasConceptScore W4253828897C185429906 @default.
- W4253828897 hasConceptScore W4253828897C33923547 @default.
- W4253828897 hasConceptScore W4253828897C50382708 @default.
- W4253828897 hasConceptScore W4253828897C74127309 @default.
- W4253828897 hasConceptScore W4253828897C83546350 @default.
- W4253828897 hasConceptScore W4253828897C9357733 @default.
- W4253828897 hasIssue "447" @default.
- W4253828897 hasLocation W42538288971 @default.
- W4253828897 hasOpenAccess W4253828897 @default.
- W4253828897 hasPrimaryLocation W42538288971 @default.
- W4253828897 hasRelatedWork W1994670953 @default.
- W4253828897 hasRelatedWork W2065849045 @default.
- W4253828897 hasRelatedWork W2115198881 @default.
- W4253828897 hasRelatedWork W2155829550 @default.
- W4253828897 hasRelatedWork W2165356107 @default.
- W4253828897 hasRelatedWork W2167187602 @default.
- W4253828897 hasRelatedWork W2186615493 @default.
- W4253828897 hasRelatedWork W2316704084 @default.
- W4253828897 hasRelatedWork W2539131618 @default.
- W4253828897 hasRelatedWork W2895792394 @default.
- W4253828897 hasVolume "94" @default.
- W4253828897 isParatext "false" @default.
- W4253828897 isRetracted "false" @default.
- W4253828897 workType "article" @default.