Matches in SemOpenAlex for { <https://semopenalex.org/work/W4253997422> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4253997422 abstract "<sec> <title>BACKGROUND</title> Lack of quantifiable biomarkers is a major obstacle in making diagnosis and predicting treatment response in depression. In adolescents, increasing suicidality during antidepressant treatment further complicate the problems. Emerging healthcare systems based on digital technology are beginning to show promising results in dealing with mental health issues. </sec> <sec> <title>OBJECTIVE</title> Using Smart Healthcare System for Teens At Risk for Depression and Suicide (STAR-DS) smartphone application and machine learning, we sought to evaluate digital phenotypes which represent the diagnosis and treatment response of depression in adolescents. </sec> <sec> <title>METHODS</title> Our study included 24 adolescents (15.4±1.4 years, 17 girls) with major depressive disorder (MDD) diagnosed with K-SADS-PL and 10 healthy controls (13.8±0.6 years, 5 girls). Their depression status was evaluated using the Children’s Depression Rating Scale–Revised (CDRS-R) and CGI-S every week during the study period. After collecting the baseline data for 1 week, MDD adolescents were treated with escitalopram in an 8 week, open-label trial. Both MDD and control groups were monitored for another 4 weeks after the baseline week. We applied deep learning approach for the analysis of data. Deep Neural Network (DNN) was employed for classification and NEural network with Weighted Fuzzy Membership functions (NEWFM) for feature selection. We extracted features from directly collected data via the mobile phone (the number and total time of calls and text messages sent or received, mobile phone usage time, movement distance, amount of activity measured by gyroscope) on a daily basis. The distance from the mean value and standard deviation of each features per week were also extracted. </sec> <sec> <title>RESULTS</title> We could predict the diagnosis of depression with training accuracy of 96.3% and 3-fold validation accuracy of 77%. Of 24 depressed adolescents, 10 responded to antidepressant treatment. Including data on medications taken by the MDD group, we predicted the treatment response of depressed adolescents with training accuracy of 94.2% and 3-fold validation accuracy of 76%. </sec> <sec> <title>CONCLUSIONS</title> The STAR-DS smartphone application demonstrated preliminary evidence of predicting diagnosis and treatment response in depressed adolescents. This is the first study to predict treatment response of MDD in adolescents, examining smartphone based objective data with machine learning approaches. </sec>" @default.
- W4253997422 created "2022-05-12" @default.
- W4253997422 creator A5002627864 @default.
- W4253997422 creator A5015685875 @default.
- W4253997422 creator A5021890683 @default.
- W4253997422 creator A5044553288 @default.
- W4253997422 creator A5051015778 @default.
- W4253997422 creator A5053186784 @default.
- W4253997422 creator A5059692607 @default.
- W4253997422 creator A5059722141 @default.
- W4253997422 creator A5081429171 @default.
- W4253997422 creator A5082792278 @default.
- W4253997422 creator A5089419349 @default.
- W4253997422 date "2020-12-22" @default.
- W4253997422 modified "2023-09-29" @default.
- W4253997422 title "Prediction of diagnosis and treatment response in adolescents with depression using smartphone application and machine learning approaches: a pilot study (Preprint)" @default.
- W4253997422 doi "https://doi.org/10.2196/preprints.26173" @default.
- W4253997422 hasPublicationYear "2020" @default.
- W4253997422 type Work @default.
- W4253997422 citedByCount "0" @default.
- W4253997422 crossrefType "posted-content" @default.
- W4253997422 hasAuthorship W4253997422A5002627864 @default.
- W4253997422 hasAuthorship W4253997422A5015685875 @default.
- W4253997422 hasAuthorship W4253997422A5021890683 @default.
- W4253997422 hasAuthorship W4253997422A5044553288 @default.
- W4253997422 hasAuthorship W4253997422A5051015778 @default.
- W4253997422 hasAuthorship W4253997422A5053186784 @default.
- W4253997422 hasAuthorship W4253997422A5059692607 @default.
- W4253997422 hasAuthorship W4253997422A5059722141 @default.
- W4253997422 hasAuthorship W4253997422A5081429171 @default.
- W4253997422 hasAuthorship W4253997422A5082792278 @default.
- W4253997422 hasAuthorship W4253997422A5089419349 @default.
- W4253997422 hasConcept C118552586 @default.
- W4253997422 hasConcept C119857082 @default.
- W4253997422 hasConcept C134362201 @default.
- W4253997422 hasConcept C139719470 @default.
- W4253997422 hasConcept C154945302 @default.
- W4253997422 hasConcept C15744967 @default.
- W4253997422 hasConcept C162324750 @default.
- W4253997422 hasConcept C27415008 @default.
- W4253997422 hasConcept C2776867660 @default.
- W4253997422 hasConcept C2777421447 @default.
- W4253997422 hasConcept C2779177272 @default.
- W4253997422 hasConcept C2779363104 @default.
- W4253997422 hasConcept C2779583969 @default.
- W4253997422 hasConcept C2780051608 @default.
- W4253997422 hasConcept C2780733359 @default.
- W4253997422 hasConcept C41008148 @default.
- W4253997422 hasConcept C558461103 @default.
- W4253997422 hasConcept C71924100 @default.
- W4253997422 hasConcept C76155785 @default.
- W4253997422 hasConceptScore W4253997422C118552586 @default.
- W4253997422 hasConceptScore W4253997422C119857082 @default.
- W4253997422 hasConceptScore W4253997422C134362201 @default.
- W4253997422 hasConceptScore W4253997422C139719470 @default.
- W4253997422 hasConceptScore W4253997422C154945302 @default.
- W4253997422 hasConceptScore W4253997422C15744967 @default.
- W4253997422 hasConceptScore W4253997422C162324750 @default.
- W4253997422 hasConceptScore W4253997422C27415008 @default.
- W4253997422 hasConceptScore W4253997422C2776867660 @default.
- W4253997422 hasConceptScore W4253997422C2777421447 @default.
- W4253997422 hasConceptScore W4253997422C2779177272 @default.
- W4253997422 hasConceptScore W4253997422C2779363104 @default.
- W4253997422 hasConceptScore W4253997422C2779583969 @default.
- W4253997422 hasConceptScore W4253997422C2780051608 @default.
- W4253997422 hasConceptScore W4253997422C2780733359 @default.
- W4253997422 hasConceptScore W4253997422C41008148 @default.
- W4253997422 hasConceptScore W4253997422C558461103 @default.
- W4253997422 hasConceptScore W4253997422C71924100 @default.
- W4253997422 hasConceptScore W4253997422C76155785 @default.
- W4253997422 hasLocation W42539974221 @default.
- W4253997422 hasOpenAccess W4253997422 @default.
- W4253997422 hasPrimaryLocation W42539974221 @default.
- W4253997422 hasRelatedWork W10491286 @default.
- W4253997422 hasRelatedWork W10500576 @default.
- W4253997422 hasRelatedWork W10970992 @default.
- W4253997422 hasRelatedWork W12033024 @default.
- W4253997422 hasRelatedWork W12408347 @default.
- W4253997422 hasRelatedWork W2854710 @default.
- W4253997422 hasRelatedWork W7268404 @default.
- W4253997422 hasRelatedWork W903996 @default.
- W4253997422 hasRelatedWork W9413724 @default.
- W4253997422 hasRelatedWork W8641949 @default.
- W4253997422 isParatext "false" @default.
- W4253997422 isRetracted "false" @default.
- W4253997422 workType "article" @default.