Matches in SemOpenAlex for { <https://semopenalex.org/work/W4254147434> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4254147434 endingPage "669" @default.
- W4254147434 startingPage "669" @default.
- W4254147434 abstract "Abstract A vast literature in statistics, biometrics, and econometrics is concerned with the analysis of binary and polychotomous response data. The classical approach fits a categorical response regression model using maximum likelihood, and inferences about the model are based on the associated asymptotic theory. The accuracy of classical confidence statements is questionable for small sample sizes. In this article, exact Bayesian methods for modeling categorical response data are developed using the idea of data augmentation. The general approach can be summarized as follows. The probit regression model for binary outcomes is seen to have an underlying normal regression structure on latent continuous data. Values of the latent data can be simulated from suitable truncated normal distributions. If the latent data are known, then the posterior distribution of the parameters can be computed using standard results for normal linear models. Draws from this posterior are used to sample new latent data, and the process is iterated with Gibbs sampling. This data augmentation approach provides a general framework for analyzing binary regression models. It leads to the same simplification achieved earlier for censored regression models. Under the proposed framework, the class of probit regression models can be enlarged by using mixtures of normal distributions to model the latent data. In this normal mixture class, one can investigate the sensitivity of the parameter estimates to the choice of “link function,” which relates the linear regression estimate to the fitted probabilities. In addition, this approach allows one to easily fit Bayesian hierarchical models. One specific model considered here reflects the belief that the vector of regression coefficients lies on a smaller dimension linear subspace. The methods can also be generalized to multinomial response models with J > 2 categories. In the ordered multinomial model, the J categories are ordered and a model is written linking the cumulative response probabilities with the linear regression structure. In the unordered multinomial model, the latent variables have a multivariate normal distribution with unknown variance-covariance matrix. For both multinomial models, the data augmentation method combined with Gibbs sampling is outlined. This approach is especially attractive for the multivariate probit model, where calculating the likelihood can be difficult." @default.
- W4254147434 created "2022-05-12" @default.
- W4254147434 creator A5024128768 @default.
- W4254147434 creator A5040648384 @default.
- W4254147434 date "1993-06-01" @default.
- W4254147434 modified "2023-09-30" @default.
- W4254147434 title "Bayesian Analysis of Binary and Polychotomous Response Data" @default.
- W4254147434 doi "https://doi.org/10.2307/2290350" @default.
- W4254147434 hasPublicationYear "1993" @default.
- W4254147434 type Work @default.
- W4254147434 citedByCount "273" @default.
- W4254147434 countsByYear W42541474342012 @default.
- W4254147434 countsByYear W42541474342013 @default.
- W4254147434 countsByYear W42541474342014 @default.
- W4254147434 countsByYear W42541474342015 @default.
- W4254147434 countsByYear W42541474342016 @default.
- W4254147434 countsByYear W42541474342017 @default.
- W4254147434 countsByYear W42541474342018 @default.
- W4254147434 countsByYear W42541474342019 @default.
- W4254147434 countsByYear W42541474342020 @default.
- W4254147434 countsByYear W42541474342021 @default.
- W4254147434 countsByYear W42541474342022 @default.
- W4254147434 countsByYear W42541474342023 @default.
- W4254147434 crossrefType "journal-article" @default.
- W4254147434 hasAuthorship W4254147434A5024128768 @default.
- W4254147434 hasAuthorship W4254147434A5040648384 @default.
- W4254147434 hasConcept C105795698 @default.
- W4254147434 hasConcept C107673813 @default.
- W4254147434 hasConcept C149782125 @default.
- W4254147434 hasConcept C152877465 @default.
- W4254147434 hasConcept C158424031 @default.
- W4254147434 hasConcept C160234255 @default.
- W4254147434 hasConcept C33923547 @default.
- W4254147434 hasConcept C37903108 @default.
- W4254147434 hasConcept C5274069 @default.
- W4254147434 hasConcept C67257552 @default.
- W4254147434 hasConcept C70727504 @default.
- W4254147434 hasConceptScore W4254147434C105795698 @default.
- W4254147434 hasConceptScore W4254147434C107673813 @default.
- W4254147434 hasConceptScore W4254147434C149782125 @default.
- W4254147434 hasConceptScore W4254147434C152877465 @default.
- W4254147434 hasConceptScore W4254147434C158424031 @default.
- W4254147434 hasConceptScore W4254147434C160234255 @default.
- W4254147434 hasConceptScore W4254147434C33923547 @default.
- W4254147434 hasConceptScore W4254147434C37903108 @default.
- W4254147434 hasConceptScore W4254147434C5274069 @default.
- W4254147434 hasConceptScore W4254147434C67257552 @default.
- W4254147434 hasConceptScore W4254147434C70727504 @default.
- W4254147434 hasIssue "422" @default.
- W4254147434 hasLocation W42541474341 @default.
- W4254147434 hasOpenAccess W4254147434 @default.
- W4254147434 hasPrimaryLocation W42541474341 @default.
- W4254147434 hasRelatedWork W1548070431 @default.
- W4254147434 hasRelatedWork W2005820577 @default.
- W4254147434 hasRelatedWork W2134762404 @default.
- W4254147434 hasRelatedWork W2182883530 @default.
- W4254147434 hasRelatedWork W2772689174 @default.
- W4254147434 hasRelatedWork W2798344499 @default.
- W4254147434 hasRelatedWork W4226402683 @default.
- W4254147434 hasRelatedWork W4233907568 @default.
- W4254147434 hasRelatedWork W4311862915 @default.
- W4254147434 hasRelatedWork W804389921 @default.
- W4254147434 hasVolume "88" @default.
- W4254147434 isParatext "false" @default.
- W4254147434 isRetracted "false" @default.
- W4254147434 workType "article" @default.