Matches in SemOpenAlex for { <https://semopenalex.org/work/W4254344201> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4254344201 abstract "Abstract PurposeTo investigate the dosimetric impact of deep learning-based auto-segmentation of organs at risk (OARs) on nasopharyngeal and rectal cancer.Methods and MaterialsTwenty patients, including ten nasopharyngeal carcinoma (NPC) patients and ten rectal cancer patients, who received radiotherapy in our department were enrolled in this study. Two deep learning-based auto-segmentation systems, including an in-house developed system (FD) and a commercial product (UIH), were used to generate two auto-segmented OARs sets (OAR_FD and OAR_UIH). Treatment plans based on auto-segmented OARs and following our clinical requirements were generated for each patient on each OARs set (Plan_FD and Plan_UIH). Geometric metrics (Hausdorff distance (HD), mean distance to agreement (MDA), the Dice similarity coefficient (DICE) and the Jaccard index) were calculated for geometric evaluation. The dosimetric impact was evaluated by comparing Plan_FD and Plan_UIH to original clinically approved plans (Plan_Manual) with dose-volume indices and 3D gamma pass rates. Spearman’s correlation analysis was performed to investigate the correlation between dosimetric deviation and geometric metrics.ResultsFD and UIH could provide similar geometric performance in parotids, temporal lobes, lens, and eyes (DICE, p > 0.05). OAR_FD had better geometric performance in the optic nerves, oral cavity, larynx, and femoral heads (DICE, p < 0.05). OAR_UIH had better geometric performance in the bladder (DICE, p < 0.05). In dosimetric analysis, both Plan_FD and Plan_UIH had nonsignificant dosimetric differences compared to Plan_Manual for most PTV and OARs dose-volume indices. The only significant dosimetric difference was the D max of the left temporal lobe for Plan_FD vs. Plan_Manual ( p = 0.05). Only one significant correlation was found between the mean dose of the femoral head and its HD index (R = 0.4, p = 0.01).ConclusionsDeep learning-based OARs auto-segmentation for NPC and rectal cancer has a nonsignificant impact on most PTV and OARs dose-volume indices. Correlations between the auto-segmentation geometric metric and dosimetric difference were not observed for most OARs." @default.
- W4254344201 created "2022-05-12" @default.
- W4254344201 creator A5012958763 @default.
- W4254344201 creator A5036881419 @default.
- W4254344201 creator A5040758375 @default.
- W4254344201 creator A5045839676 @default.
- W4254344201 creator A5047727694 @default.
- W4254344201 creator A5049316498 @default.
- W4254344201 creator A5077959358 @default.
- W4254344201 date "2021-03-19" @default.
- W4254344201 modified "2023-10-16" @default.
- W4254344201 title "The Dosimetric Impact of Deep Learning-Based Auto-Segmentation of Organs at Risk on Nasopharyngeal and Rectal Cancer" @default.
- W4254344201 doi "https://doi.org/10.21203/rs.3.rs-328649/v1" @default.
- W4254344201 hasPublicationYear "2021" @default.
- W4254344201 type Work @default.
- W4254344201 citedByCount "0" @default.
- W4254344201 crossrefType "posted-content" @default.
- W4254344201 hasAuthorship W4254344201A5012958763 @default.
- W4254344201 hasAuthorship W4254344201A5036881419 @default.
- W4254344201 hasAuthorship W4254344201A5040758375 @default.
- W4254344201 hasAuthorship W4254344201A5045839676 @default.
- W4254344201 hasAuthorship W4254344201A5047727694 @default.
- W4254344201 hasAuthorship W4254344201A5049316498 @default.
- W4254344201 hasAuthorship W4254344201A5077959358 @default.
- W4254344201 hasBestOaLocation W42543442011 @default.
- W4254344201 hasConcept C105795698 @default.
- W4254344201 hasConcept C121684516 @default.
- W4254344201 hasConcept C124504099 @default.
- W4254344201 hasConcept C126838900 @default.
- W4254344201 hasConcept C153180895 @default.
- W4254344201 hasConcept C154945302 @default.
- W4254344201 hasConcept C163892561 @default.
- W4254344201 hasConcept C201645570 @default.
- W4254344201 hasConcept C203519979 @default.
- W4254344201 hasConcept C22029948 @default.
- W4254344201 hasConcept C2779104521 @default.
- W4254344201 hasConcept C2989005 @default.
- W4254344201 hasConcept C33923547 @default.
- W4254344201 hasConcept C41008148 @default.
- W4254344201 hasConcept C509974204 @default.
- W4254344201 hasConcept C71924100 @default.
- W4254344201 hasConcept C89600930 @default.
- W4254344201 hasConceptScore W4254344201C105795698 @default.
- W4254344201 hasConceptScore W4254344201C121684516 @default.
- W4254344201 hasConceptScore W4254344201C124504099 @default.
- W4254344201 hasConceptScore W4254344201C126838900 @default.
- W4254344201 hasConceptScore W4254344201C153180895 @default.
- W4254344201 hasConceptScore W4254344201C154945302 @default.
- W4254344201 hasConceptScore W4254344201C163892561 @default.
- W4254344201 hasConceptScore W4254344201C201645570 @default.
- W4254344201 hasConceptScore W4254344201C203519979 @default.
- W4254344201 hasConceptScore W4254344201C22029948 @default.
- W4254344201 hasConceptScore W4254344201C2779104521 @default.
- W4254344201 hasConceptScore W4254344201C2989005 @default.
- W4254344201 hasConceptScore W4254344201C33923547 @default.
- W4254344201 hasConceptScore W4254344201C41008148 @default.
- W4254344201 hasConceptScore W4254344201C509974204 @default.
- W4254344201 hasConceptScore W4254344201C71924100 @default.
- W4254344201 hasConceptScore W4254344201C89600930 @default.
- W4254344201 hasLocation W42543442011 @default.
- W4254344201 hasOpenAccess W4254344201 @default.
- W4254344201 hasPrimaryLocation W42543442011 @default.
- W4254344201 hasRelatedWork W3012828488 @default.
- W4254344201 hasRelatedWork W3093926553 @default.
- W4254344201 hasRelatedWork W3094077541 @default.
- W4254344201 hasRelatedWork W3120092106 @default.
- W4254344201 hasRelatedWork W3137474587 @default.
- W4254344201 hasRelatedWork W3164075923 @default.
- W4254344201 hasRelatedWork W3210283953 @default.
- W4254344201 hasRelatedWork W4254344201 @default.
- W4254344201 hasRelatedWork W4287631720 @default.
- W4254344201 hasRelatedWork W4367019122 @default.
- W4254344201 isParatext "false" @default.
- W4254344201 isRetracted "false" @default.
- W4254344201 workType "article" @default.