Matches in SemOpenAlex for { <https://semopenalex.org/work/W4254403502> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4254403502 abstract "<sec> <title>BACKGROUND</title> Diagnosing mental disorders is usually not an easy task and requires a large amount of time and effort given the complex nature of mental disorders. Artificial intelligence (AI) has been successfully exploited in diagnosing many mental disorders. Numerous systematic reviews summarize the evidence on the accuracy of AI models in diagnosing different mental disorders. </sec> <sec> <title>OBJECTIVE</title> This umbrella review aims to synthesize results of previous systematic reviews on the performance of AI models in diagnosing mental disorders. </sec> <sec> <title>METHODS</title> To identify relevant systematic reviews, we searched 11 electronic databases, checked the reference list of the included reviews, and checked the reviews that cited the included reviews. Two reviewers independently selected the relevant reviews, extracted the data from them, and appraised their quality. We synthesized the extracted data using the narrative approach. Specifically, results of the included reviews were grouped based on the target mental disorders that the AI classifiers distinguish. </sec> <sec> <title>RESULTS</title> We included 15 systematic reviews of 852 citations identified by searching all databases. The included reviews assessed the performance of AI models in diagnosing Alzheimer’s disease (n=7), mild cognitive impairment (n=6), schizophrenia (n=3), bipolar disease (n=2), autism spectrum disorder (n=1), obsessive-compulsive disorder (n=1), post-traumatic stress disorder (n=1), and psychotic disorders (n=1). The performance of the AI models in diagnosing these mental disorders ranged between 21% and 100%. </sec> <sec> <title>CONCLUSIONS</title> AI technologies offer great promise in diagnosing mental health disorders. The reported performance metrics paint a vivid picture of a bright future for AI in this field. To expedite progress towards these technologies being incorporated into routine practice, we recommend that healthcare professionals in the field cautiously and consciously begin to explore the opportunities of AI-based tools for their daily routine. It would also be encouraging to see a greater number of meta-analyses and further systematic reviews on performance of AI models in diagnosing other common mental disorders such as depression and anxiety. </sec> <sec> <title>CLINICALTRIAL</title> CRD42021231558 </sec>" @default.
- W4254403502 created "2022-05-12" @default.
- W4254403502 creator A5001592898 @default.
- W4254403502 creator A5020810020 @default.
- W4254403502 creator A5030066648 @default.
- W4254403502 creator A5053540130 @default.
- W4254403502 creator A5057926319 @default.
- W4254403502 creator A5067060292 @default.
- W4254403502 creator A5080890851 @default.
- W4254403502 date "2021-03-30" @default.
- W4254403502 modified "2023-09-28" @default.
- W4254403502 title "The performance of artificial intelligence-driven technologies in diagnosing mental disorders: An umbrella review (Preprint)" @default.
- W4254403502 cites W1893604657 @default.
- W4254403502 cites W2118202495 @default.
- W4254403502 cites W2520682644 @default.
- W4254403502 cites W2583500168 @default.
- W4254403502 cites W2597430849 @default.
- W4254403502 cites W2734832579 @default.
- W4254403502 cites W2734913551 @default.
- W4254403502 cites W2761181345 @default.
- W4254403502 cites W2766487143 @default.
- W4254403502 cites W2800072875 @default.
- W4254403502 cites W2807282345 @default.
- W4254403502 cites W2886445457 @default.
- W4254403502 cites W2886773765 @default.
- W4254403502 cites W2888482633 @default.
- W4254403502 cites W2896782924 @default.
- W4254403502 cites W2913614159 @default.
- W4254403502 cites W2916945592 @default.
- W4254403502 cites W2951373364 @default.
- W4254403502 cites W2953303127 @default.
- W4254403502 cites W2972500508 @default.
- W4254403502 cites W2986786264 @default.
- W4254403502 cites W2990581109 @default.
- W4254403502 cites W2993242472 @default.
- W4254403502 cites W3007838968 @default.
- W4254403502 cites W3012078580 @default.
- W4254403502 cites W3025612358 @default.
- W4254403502 cites W3028130810 @default.
- W4254403502 cites W3034674374 @default.
- W4254403502 cites W3037114781 @default.
- W4254403502 cites W3037254739 @default.
- W4254403502 cites W3045956845 @default.
- W4254403502 cites W3056360109 @default.
- W4254403502 cites W3082047811 @default.
- W4254403502 cites W3087538850 @default.
- W4254403502 cites W4211145950 @default.
- W4254403502 cites W4245381126 @default.
- W4254403502 doi "https://doi.org/10.2196/preprints.29235" @default.
- W4254403502 hasPublicationYear "2021" @default.
- W4254403502 type Work @default.
- W4254403502 citedByCount "0" @default.
- W4254403502 crossrefType "posted-content" @default.
- W4254403502 hasAuthorship W4254403502A5001592898 @default.
- W4254403502 hasAuthorship W4254403502A5020810020 @default.
- W4254403502 hasAuthorship W4254403502A5030066648 @default.
- W4254403502 hasAuthorship W4254403502A5053540130 @default.
- W4254403502 hasAuthorship W4254403502A5057926319 @default.
- W4254403502 hasAuthorship W4254403502A5067060292 @default.
- W4254403502 hasAuthorship W4254403502A5080890851 @default.
- W4254403502 hasConcept C118552586 @default.
- W4254403502 hasConcept C134362201 @default.
- W4254403502 hasConcept C145734003 @default.
- W4254403502 hasConcept C15744967 @default.
- W4254403502 hasConcept C17744445 @default.
- W4254403502 hasConcept C189708586 @default.
- W4254403502 hasConcept C199539241 @default.
- W4254403502 hasConcept C2776412080 @default.
- W4254403502 hasConcept C2779473830 @default.
- W4254403502 hasConcept C38905598 @default.
- W4254403502 hasConcept C70410870 @default.
- W4254403502 hasConcept C71924100 @default.
- W4254403502 hasConceptScore W4254403502C118552586 @default.
- W4254403502 hasConceptScore W4254403502C134362201 @default.
- W4254403502 hasConceptScore W4254403502C145734003 @default.
- W4254403502 hasConceptScore W4254403502C15744967 @default.
- W4254403502 hasConceptScore W4254403502C17744445 @default.
- W4254403502 hasConceptScore W4254403502C189708586 @default.
- W4254403502 hasConceptScore W4254403502C199539241 @default.
- W4254403502 hasConceptScore W4254403502C2776412080 @default.
- W4254403502 hasConceptScore W4254403502C2779473830 @default.
- W4254403502 hasConceptScore W4254403502C38905598 @default.
- W4254403502 hasConceptScore W4254403502C70410870 @default.
- W4254403502 hasConceptScore W4254403502C71924100 @default.
- W4254403502 hasLocation W42544035021 @default.
- W4254403502 hasOpenAccess W4254403502 @default.
- W4254403502 hasPrimaryLocation W42544035021 @default.
- W4254403502 hasRelatedWork W109402 @default.
- W4254403502 hasRelatedWork W14337430 @default.
- W4254403502 hasRelatedWork W2286111 @default.
- W4254403502 hasRelatedWork W2657021 @default.
- W4254403502 hasRelatedWork W6931465 @default.
- W4254403502 hasRelatedWork W697547 @default.
- W4254403502 hasRelatedWork W7918995 @default.
- W4254403502 hasRelatedWork W8501841 @default.
- W4254403502 hasRelatedWork W878244 @default.
- W4254403502 hasRelatedWork W8803798 @default.
- W4254403502 isParatext "false" @default.
- W4254403502 isRetracted "false" @default.
- W4254403502 workType "article" @default.