Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255025810> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4255025810 endingPage "616" @default.
- W4255025810 startingPage "609" @default.
- W4255025810 abstract "In mobile laser scanning systems, the platform’s position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level." @default.
- W4255025810 created "2022-05-12" @default.
- W4255025810 creator A5059990087 @default.
- W4255025810 creator A5086258375 @default.
- W4255025810 creator A5086428184 @default.
- W4255025810 date "2016-06-03" @default.
- W4255025810 modified "2023-09-29" @default.
- W4255025810 title "AUTOMATIC FEATURE DETECTION, DESCRIPTION AND MATCHING FROM MOBILE LASER SCANNING DATA AND AERIAL IMAGERY" @default.
- W4255025810 doi "https://doi.org/10.5194/isprsarchives-xli-b1-609-2016" @default.
- W4255025810 hasPublicationYear "2016" @default.
- W4255025810 type Work @default.
- W4255025810 citedByCount "6" @default.
- W4255025810 countsByYear W42550258102017 @default.
- W4255025810 countsByYear W42550258102018 @default.
- W4255025810 countsByYear W42550258102019 @default.
- W4255025810 countsByYear W42550258102020 @default.
- W4255025810 countsByYear W42550258102022 @default.
- W4255025810 crossrefType "journal-article" @default.
- W4255025810 hasAuthorship W4255025810A5059990087 @default.
- W4255025810 hasAuthorship W4255025810A5086258375 @default.
- W4255025810 hasAuthorship W4255025810A5086428184 @default.
- W4255025810 hasBestOaLocation W42550258101 @default.
- W4255025810 hasConcept C115961682 @default.
- W4255025810 hasConcept C120665830 @default.
- W4255025810 hasConcept C121332964 @default.
- W4255025810 hasConcept C131979681 @default.
- W4255025810 hasConcept C138885662 @default.
- W4255025810 hasConcept C141349535 @default.
- W4255025810 hasConcept C14279187 @default.
- W4255025810 hasConcept C153180895 @default.
- W4255025810 hasConcept C154945302 @default.
- W4255025810 hasConcept C160633673 @default.
- W4255025810 hasConcept C179458375 @default.
- W4255025810 hasConcept C2776401178 @default.
- W4255025810 hasConcept C31972630 @default.
- W4255025810 hasConcept C41008148 @default.
- W4255025810 hasConcept C41895202 @default.
- W4255025810 hasConcept C520434653 @default.
- W4255025810 hasConcept C52622490 @default.
- W4255025810 hasConcept C60229501 @default.
- W4255025810 hasConcept C76155785 @default.
- W4255025810 hasConceptScore W4255025810C115961682 @default.
- W4255025810 hasConceptScore W4255025810C120665830 @default.
- W4255025810 hasConceptScore W4255025810C121332964 @default.
- W4255025810 hasConceptScore W4255025810C131979681 @default.
- W4255025810 hasConceptScore W4255025810C138885662 @default.
- W4255025810 hasConceptScore W4255025810C141349535 @default.
- W4255025810 hasConceptScore W4255025810C14279187 @default.
- W4255025810 hasConceptScore W4255025810C153180895 @default.
- W4255025810 hasConceptScore W4255025810C154945302 @default.
- W4255025810 hasConceptScore W4255025810C160633673 @default.
- W4255025810 hasConceptScore W4255025810C179458375 @default.
- W4255025810 hasConceptScore W4255025810C2776401178 @default.
- W4255025810 hasConceptScore W4255025810C31972630 @default.
- W4255025810 hasConceptScore W4255025810C41008148 @default.
- W4255025810 hasConceptScore W4255025810C41895202 @default.
- W4255025810 hasConceptScore W4255025810C520434653 @default.
- W4255025810 hasConceptScore W4255025810C52622490 @default.
- W4255025810 hasConceptScore W4255025810C60229501 @default.
- W4255025810 hasConceptScore W4255025810C76155785 @default.
- W4255025810 hasLocation W42550258101 @default.
- W4255025810 hasOpenAccess W4255025810 @default.
- W4255025810 hasPrimaryLocation W42550258101 @default.
- W4255025810 hasRelatedWork W1000462 @default.
- W4255025810 hasRelatedWork W11691867 @default.
- W4255025810 hasRelatedWork W12239746 @default.
- W4255025810 hasRelatedWork W13815759 @default.
- W4255025810 hasRelatedWork W2712644 @default.
- W4255025810 hasRelatedWork W3238102 @default.
- W4255025810 hasRelatedWork W4033802 @default.
- W4255025810 hasRelatedWork W4090223 @default.
- W4255025810 hasRelatedWork W6837029 @default.
- W4255025810 hasRelatedWork W9783904 @default.
- W4255025810 hasVolume "XLI-B1" @default.
- W4255025810 isParatext "false" @default.
- W4255025810 isRetracted "false" @default.
- W4255025810 workType "article" @default.