Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255349002> ?p ?o ?g. }
- W4255349002 endingPage "331" @default.
- W4255349002 startingPage "320" @default.
- W4255349002 abstract "Free Access References Leonard Kaufman, Vrije Universiteit Brussel, Brussels, BelgiumSearch for more papers by this authorPeter J. Rousseeuw, Universitaire Instelling Antwerpen, Antwerp, BelgiumSearch for more papers by this author Book Author(s):Leonard Kaufman, Vrije Universiteit Brussel, Brussels, BelgiumSearch for more papers by this authorPeter J. Rousseeuw, Universitaire Instelling Antwerpen, Antwerp, BelgiumSearch for more papers by this author First published: 08 March 1990 https://doi.org/10.1002/9780470316801.refsBook Series:Wiley Series in Probability and Statistics AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinked InRedditWechat References Sections in which a particular reference is cited are given in brackets. Google Scholar Abrahamowicz, M., (1985), The use of non-numerical a priori information for measuring dissimilarities, paper presented at the Fourth European Meeting of the Psychometric Society and the Classification Societies, 2–5 July, Cambridge (UK). [1.2.1] Google Scholar Anderberg, M. R., (1973), Cluster Analysis for Applications, Academic, New York. [2.5.3, 5.5.1, 5.5.2, 5.5.3] CrossrefWeb of Science®Google Scholar Andes, N., (1985), Application of validity techniques on a hierarchical cluster solution using U. S. occupations, paper presented at the Fourth European Meeting of the Psychometric Society and the Classification Societies, 2–5 July, Cambridge (UK). [2.5.6] Google Scholar Andrews, D. F., (1972), Plots of high-dimensional data, Biometrics, 28, 125– 136. [2.5.6] CrossrefWeb of Science®Google Scholar Bailey, T. A., and Dubes, R., (1982), Cluster validity profiles, Pattern Recognition, 15, 61– 83. [2.5.6] CrossrefWeb of Science®Google Scholar Baker, F. B., (1974), Stability of two hierarchical grouping techniques: Case I: Sensitivity to data errors, J. Amer. Statist. Assoc., 69, 440– 445. [5.5.1] CrossrefWeb of Science®Google Scholar Ball, G. H., and Hall, D. J., (1965), A novel method of data analysis and pattern classification, Technical Report, Stanford Research Institute, California. [2.5.3] Google Scholar Bayne, C. K., Beauchamp, J. J., Begovich, C. L., and Kane, V. E., (1980), Monte Carlo comparisons of selected clustering procedures, Pattern Recognition, 12, 51– 62. [5.5.2] CrossrefWeb of Science®Google Scholar Bentley, J. L., and Friedman, J. H., (1978), Fast algorithms for constructing minimal spanning trees in coordinate spaces, IEEE Trans. Computers, C-27, 97– 104. [3.5.2] CrossrefWeb of Science®Google Scholar Berlin, J., (1967), Sémiologie Graphique, Gauthier-Villars, Paris. [5.5.3] Google Scholar Bezdek, J. C., (1974), Cluster validity with fuzzy sets, J. Cybernetics, 3, 58– 72. [4.5.1, 4.5.2] CrossrefGoogle Scholar Blashfield, R. K., (1976), Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods, Psychol. Bull., 83, 377– 388. [5.5.2] CrossrefWeb of Science®Google Scholar Bock, H. H., (1974), Automatische Klassifikation, Studia Mathematica, Vandenhoek und Ruprecht, Göttingen. [1.2.3, 1.2.4, 1.3, 1.ex, 2.5.3, 5.5.1] Google Scholar Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. H., (1984), Classification and Regression Trees, Wadsworth, Belmont, California. [7.5.3] Google Scholar Bruynooghe, M., (1978), Large data set clustering methods using the concept of space contraction, COMPSTAT 3, Physika Verlag, Vienna, pp. 239– 245. [3.5.2] Google Scholar Carmichael, J. W., and Sneath, P. H. A., (1969), Taxometric maps, Systematic Zoology, 18, 402– 415. [1.2.1, 2.5.6] CrossrefWeb of Science®Google Scholar Chambers, J. M., and Kleiner, B., (1982), Graphical techniques for multivariate data and for clustering, in Handbook for Statistics, Volume 2, North-Holland, New York, pp. 206– 244. [2.5.6] Google Scholar Chandon, J. L., and Pinson, S., (1981), Analyse Typologique: Théories et Applications, Masson, Paris. [1.1, 2.5.4, 5.ex, 6.5.1] Google Scholar Chen, H., Gnanadesikan, R., and Kettenring, J. R., (1974), Statistical methods for grouping corporations, Sankhyā Ser. B, 36, 1– 28. [2.5.6] Web of Science®Google Scholar Chernoff, H., (1973), Using faces to represent points in k-dimensional space graphically, J. Amer. Statist. Assoc., 68, 361– 368. [2.5.6] CrossrefWeb of Science®Google Scholar Chin, S., Domingo, L., Carnevali, A., Caltabiano, R., and Detrich, J., (1985), Parallel computation on the ICAP computer system: A guide to the precompiler, Technical Report, IBM Corporation, Data Systems Division, Kingston, New York. [3.5.3] Google Scholar Church, R., (1978), Contrasts between facility location approaches and nonhierarchical cluster analysis, paper presented at ORSA/TIMS Joint National Meeting, Los Angeles, California, Nov. 1978. [2.5.1] Google Scholar Clementi, E., and Logan, D., (1985), Parallel processing with the loosely coupled array of processors system, Technical Report, IBM Corporation, Data Systems Division, Kingston, New York. [3.5.3] Google Scholar Cohen, A., Gnanadesikan, R., Kettenring, J., and Landwehr, J. M., (1977), Methodological developments in some applications of clustering, in Applications of Statistics, edited by P. R. Krishnaiah, North-Holland, New York, pp. 141– 162. [2.5.6] Google Scholar Colless, D. H., (1967), An examination of certain concepts in phenetic taxonomy, Systematic Zoology, 16, 6– 27. [1.2.6] CrossrefWeb of Science®Google Scholar Coomans, D., and Massart, D. L., (1981), Potential methods in pattern recognition, Part 2. CLUPOT: An unsupervised pattern recognition technique, Anal. Chim. Acta, 133, 225– 239. [2.5.4] CrossrefCASGoogle Scholar Cooper, L., (1963), Location-allocation problems, Operat. Res. 11, 331– 343. [2.5.3] Web of Science®Google Scholar Cormack, R. M., (1971), A review of classification (with discussion), J. Roy. Statist. Soc., Ser. A, 134, 321– 367. [5.5.2] Wiley Online LibraryWeb of Science®Google Scholar Cormack, R. M., (1980), Classification: An overview, in Analyse de Données et Informatique, edited by R. Tomassone, I. N. R. I. A., Le Chesnay. 125– 147. [5.5.2] Google Scholar Crawford, R. M. M., and Wishart, D., (1967), A rapid multivariate method for the detection and classification of groups of ecologically related species, J. Ecology, 55, 505– 524. [7.5.2] CrossrefWeb of Science®Google Scholar Critchley, F., and Heiser, W., (1988), Hierarchical trees can be perfectly scaled in one dimension, J. Classification, 5, 5– 20. [5.1] CrossrefWeb of Science®Google Scholar Cunningham, K. M., and Ogilvie, J. C., (1972), Evaluation of hierarchical grouping techniques: A preliminary study, Computer Journal, 15, 209– 213. [5.5.2] CrossrefWeb of Science®Google Scholar Davies, P. M., and Coxon, A. P. M., (1983), The MDS(X) Series of Multidimensional Scaling Programs, Program Library Unit, University of Edinburgh (Inter-University Research Council Series, Report No. 55, January 1983). [5.5.3] Google Scholar Defay, D., (1977), An efficient algorithm for a complete link method, Computer Journal, 20, 364– 366. [5.5.1] CrossrefWeb of Science®Google Scholar Degens, P. O., and Federkiel, H., (1978), A Monte Carlo study on agglomerative large sample clustering, COMPSTAT 3, Physika Verlag, Vienna pp. 246– 252. [5.5.2] Google Scholar Deichsel, G., (1980), Random walk clustering in large data sets, COMPSTAT 4, Physika Verlag, Vienna, pp. 454– 459. [3.5.1] Google Scholar Delattre, M., and Hansen, P., (1980), Bicriterion cluster analysis, IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-2, 277– 291. [2.3, 5.5.1] CrossrefWeb of Science®Google Scholar Dice, L. R., (1945), Measures of the amount of ecologic association between species, J. Ecology, 26, 297– 302. [1.2.4] Wiley Online LibraryGoogle Scholar Diday, E., (1971), Une nouvelle méthode en classification automatique et reconnaissance des formes: La methode des nuées dynamiques, Rev. Statist. Appl., 19, 19– 33. [2.5.3, 3.5.1] Google Scholar Diday, E., (1974), Optimization in non-hierarchical clustering, Pattern Recognition, 6, 17– 33. [2.5.3] CrossrefWeb of Science®Google Scholar Diday, E., (1975), Classification automatique séquentielle pour grands tableaux, Rev. Française Automat. Inform. Recherche Opérat., B1, 29– 61. [3.5.1, 3.5.2] Google Scholar Diday, E., (1985), An extension of hierarchical clustering: The pyramidal representation, paper presented at the Fourth European Meeting of the Psychometric Society and the Classification Societies, 2–5 July, Cambridge (UK). [5.5.3] Google Scholar Dubes, R., and Jain, A. K., (1976), Clustering techniques: The user's dilemma, Pattern Recognition, 8, 247– 260. [5.5.2] CrossrefWeb of Science®Google Scholar DuBien, J. L., and Warde, W. D., (1979), A mathematical comparison of the members of an infinite family of agglomerative clustering algorithms, Canad. J. Statist., 7, 29– 38. [5.5.1] Wiley Online LibraryGoogle Scholar Ducker, S. C., Williams, W. T., and Lance, G. N., (1965), Numerical classifications of the Pacific forms for Chlorodesmis (Chlorophyta), Austral. J. Botany, 13, 489– 499. [1.2.6] CrossrefGoogle Scholar Dumas, F. N., (1955), Manifest Structure Analysis, Montana State University Press, Missoula, Montana. [1.2.4] Google Scholar Dunn, J. C., (1974), A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybernetics, 3, 32– 57. [4.5.1] CrossrefGoogle Scholar Dunn, J. C., (1976), Indices of partition fuzziness and the detection of clusters in large data sets, in Fuzzy Automata and Decision Processes, edited by M. Gupta, Elsevier, New York. [4.2.2, 4.4.1] Google Scholar Dunn, D. M., and Landwehr, J. M., (1976), Graphical displays for analyzing aggregation effects from clustering in two different time periods, ASA Proc. Stat. Comp. Section, American Statistical Association, Alexandria, Virginia, 142– 147. [2.5.6] Google Scholar Dunn, D. M., and Landwehr, J. M., (1980), Analyzing clustering effects across time, J. Amer. Statist. Assoc., 75, 8– 15. [2.5.6] CrossrefWeb of Science®Google Scholar Duran, B. S., and Odell, P. L., (1974), Cluster Analysis, Springer, Berlin. [1.2.4] Google Scholar Eades, D. C., (1965), The inappropriateness of the correlation coefficient as a measure of taxonomic resemblance, Systematic Zoology, 14, 98– 100. [1.2.3] CrossrefGoogle Scholar Edmonston, B., (1986), Clustergram: A new graphical display for cluster partitions, paper presented at the Annual Meeting of the American Statistical Association, Chicago, 18–21 August. [2.5.6] Google Scholar Edwards, A. W. F., and Cavalli-Sforza, L. L., (1965), A method for cluster analysis, Biometrics, 21, 362– 375. [2.ex, 6.5.2] CrossrefCASPubMedWeb of Science®Google Scholar Engelman, L., (1977), Cluster analysis of cases, in BMDP Biomedical Computer Programs, edited by W. J. Dixon et al., University of California Press, Berkeley. [5.5.3] Google Scholar Erlenkotter, D., (1978), A dual-based procedure for uncapacitated facility location, Operat. Res., 26, 992– 1009. [2.5.1] CrossrefWeb of Science®Google Scholar Everitt, B., (1977), Cluster Analysis, Heinemann Educational Books, London. [5.5.2] Google Scholar Everitt, B., (1978), Graphical Techniques for Multivariate Data, Heinemann Educational Books, London. [2.5.6] Google Scholar Fisher, L., and Van Ness, J. W., (1971), Admissible clustering procedures, Biometrika, 58, 91– 104. [5.5.2] CrossrefWeb of Science®Google Scholar Fisher, W. D., (1958), On grouping for maximum homogeneity, J. Amer. Statist. Assoc., 53, 789– 798. [2.5.3] Web of Science®Google Scholar Fleiss, J. L., and Zubin, J., (1969), On the methods and theory of clustering, Multivariate Behaviour Res., 4, 235– 250. [1.2.3] CrossrefCASPubMedWeb of Science®Google Scholar Florek, K., Lukaszewicz Perkal, J., Steinhaus, H., and Zubrzycki, S., (1951), Sur la liaison et la division des points d'un ensemble fini, Colloq. Math., 2, 282– 285. [5.5.1] CrossrefGoogle Scholar Forgy, E. W., (1965), Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications (abstract), Biometrics, 21, 768– 769. [2.5.3] Web of Science®Google Scholar Fowlkes, E. B., Gabbe, J. D., and McRae, J. E., (1976), A graphical technique for making a two dimensional display of multidimensional clusters, ASA Proceedings of the Business and Economics Statistics Section, American Statistical Association, Alexandria, Virginia, pp. 308– 312. [5.5.2] Google Scholar Fowlkes, E. B., Gnanadesikan, R., and Kettenring, J. R., (1988), Variable selection in clustering, J. Classification, 5, 205– 228. [1.2.1] CrossrefWeb of Science®Google Scholar Fowlkes, E. B., and Mallows, C. L., (1983), A method for comparing two hierarchical clusterings (with discussion), J. Amer. Statist. Assoc., 78, 553– 584. [5.5.2] Web of Science®Google Scholar Friedman, H. P., and Rubin, J., (1967), On some invariant criteria for grouping data. J. Amer. Statist. Assoc., 62, 1159– 1178. [1.2.1, 2.5.3] Web of Science®Google Scholar Friedman, J. H., and Tukey, J. W., (1974), A projection pursuit algorithm for exploratory data analysis, IEEE Trans. Computers, C-23, 881– 890. [7.5.3] CrossrefWeb of Science®Google Scholar Gabriel, K. R., (1971), The biplot graphic display of matrices with application to principal component analysis, Biometrika, 58, 453– 467. [2.5.6] CrossrefWeb of Science®Google Scholar Gale, N., Halperin, W. C., and Costanzo, C. M., (1984), Unclassed matrix shading and optimal ordering in hierarchical cluster analysis, J. Classification, 1, 75– 92. [2.5.6] CrossrefWeb of Science®Google Scholar Garfinkel, R. S., and Nemhauser, G. L., (1972), Integer Programming, Wiley, New York. [2.5.2] Google Scholar Gauss, C. F., (1821), Göttingsche gelehrte Anzeigeny, pp. 321– 327 (reprinted in Werke, 4, 98). [5.5.2] Google Scholar Gnanadesikan, R., Kettenring, J. R., and Landwehr, J. M., (1977), Interpreting and assessing the results of cluster analysis, Bull. Int. Statist. Inst., 47, 451– 463. [2.5.6] Google Scholar Gnanadesikan, R., Kettenring, J. R., and Landwehr, J. M., (1982), Projection plots for displaying clusters, in Statistics and Probability: Essays in Honor of C. R. Rao, edited by G. Kallianpur and J. K. Ghosh, North-Holland, New York, pp. 269– 280. [2.5.6] Google Scholar Good, I. J., (1965), A categorization of classification, in Mathematics and Computer Science in Biology and Medicine, Her Majesty's Stationery Office, London, 115– 128. [2.5.4] Google Scholar Good, I. J., (1977), The botryology of botryology, in Classification and Clustering, edited by J. Van Ryzin, Academic, New York. [1.1] Google Scholar Gordon, A. D., (1981), Classification: Methods for the Exploratory Analysis of Multivariate Data, Chapman and Hall, London. [2.2.2, 5.5.1] Google Scholar Gower, J. C., (1966), Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika, 53, 325– 338. [1.2.3] CrossrefWeb of Science®Google Scholar Gower, J. C., (1967), A comparison of some methods of cluster analysis, Biometrics, 23, 623– 637. [5.5.1, 6.5.2, 7.5.3] CrossrefCASPubMedWeb of Science®Google Scholar Gower, J. C., (1968), Multivariate analysis and multidimensional geometry, The Statistician, 17, 13– 28. [5.1] Wiley Online LibraryWeb of Science®Google Scholar Gower, J. C., (1971a), A general coefficient of similarity and some of its properties, Biometrics, 27, 857– 871. [1.2.4, 1.2.6] CrossrefWeb of Science®Google Scholar Gower, J. C., (1971b), Discussion of a paper by R. M. Cormack, J. Roy. Statist. Soc., Ser. A, 134, 360– 365. [5.5.2] Google Scholar Gower, J. C., and Ross, G. J. S., (1969), Minimum spanning trees and single linkage cluster analysis, Appl. Statist., 18, 54– 64. [3.5.2, 5.5.1] Wiley Online LibraryWeb of Science®Google Scholar Gruvaeus, G., and Wainer, H., (1972), Two additions to hierarchical cluster analysis, Br. J. Math. Statist. Psychol., 25, 200– 206. [5.1] Wiley Online LibraryWeb of Science®Google Scholar Hakimi, S. L., (1965), Optimum distribution of switching centers in a communication network and some related graph theoretic problems, Operat. Res., 13, 462– 475. [2.5.2] CrossrefWeb of Science®Google Scholar Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A., (1986), Robust Statistics: The Approach Based on Influence Functions, Wiley, New York. [1.2.1] Google Scholar Hansen, P., and Delattre, M., (1978), Complete-link cluster analysis by graph coloring, J. Amer. Statist. Assoc., 73, 397– 403. [5.5.1] CrossrefWeb of Science®Google Scholar Hansen, P., and Lehert, Ph., (1980), Clustering by connected components large data sets with Minkowsky distances between entities, in Data Analysis and Informatics, edited by E. Diday, North-Holland, Amsterdam, pp. 561– 567. [3.5.2] Google Scholar Hardy, A., and Rasson, J. P., (1982), Une nouvelle approche des problemes de classification automatique, Statist. Anal. Données, 7, 41– 56. [1.2.1] Google Scholar Hartigan, J., (1972), Direct clustering of a data matrix, J. Amer. Statist. Assoc., 67, 123– 129. [2.5.4] CrossrefWeb of Science®Google Scholar Hartigan, J., (1975), Clustering Algorithms, Wiley-Interscience, New York. [1.2.1, 2.5.4, 3.5.1, 3.5.2, 5.5.1, 5.5.3] Google Scholar Hathaway, R. J., and Bezdek, J. C., (1988), Recent convergence results for the fuzzy c-means clustering algorithms, J. Classification, 5, 237– 247. [4.5.1] CrossrefWeb of Science®Google Scholar Hill, L. R., Silvestri, L. G., Ihm, P., Farchi, G., and Lanciani, P., (1965), Automatic classification of Staphylococci by principal component analysis and a gradient method, J. Bacteriology, 89, 1393– 1401. [1.2.4] CASPubMedWeb of Science®Google Scholar Holman, E. W., (1985), Evolutionary and psychological effects in pre-evolutionary classifications, J. Classification, 2, 29– 39. [1.1] CrossrefWeb of Science®Google Scholar Hubert, L. J., (1973), Monotone invariant clustering procedures, Psychometrika, 38, 47– 62. [6.5.1] CrossrefWeb of Science®Google Scholar Hyvarinen, L., (1962), Classification of qualitative data, Nord. Tidskr. Info. Behandling (BIT), 2, 83– 89. [1.2.5] Google Scholar Jaccard, P., (1908), Nouvelles recherches sur la distribution florale, Bull. Soc. Vaud. Sci. Nat., 44, 223– 270. [1.2.4] Google Scholar Jancey, R. C., (1966), Multidimensional group analysis, Austral. J. Botany, 14, 127– 130. [2.5.3] CrossrefWeb of Science®Google Scholar Jardine, N., (1969), Towards a general theory of clustering (abstract), Biometrics, 25, 609– 610. [5.5.1] Web of Science®Google Scholar Jardine, N., and Sibson, R., (1968), The construction of hierarchic and non-hierarchic classifications, Computer J., 11, 117– 184. [5.5.2] CrossrefGoogle Scholar Jardine, N., and Sibson, R., (1971), Mathematical Taxonomy, Wiley, New York. [5.5.2] Google Scholar Jarvis, R. A., and Patrick, E. A., (1973), Clustering using a similarity measure based on shared near neighbors, IEEE Trans. Computers, C-22, 1025– 1034. [3.5.2] CrossrefWeb of Science®Google Scholar Johnson, S. C., (1967), Hierarchical clustering schemes, Psychometrika, 32, 241– 254. [1.2.2, 3.5.2, 5.5.1, 5.5.3] CrossrefCASPubMedWeb of Science®Google Scholar Kaufman, L., Hopke, Ph. K., and Rousseeuw, P. J., (1988), Using a parallel computer system for statistical resampling methods, Comput. Statist. Quart., 2, 129– 141. [3.5.3] Google Scholar Kaufman, L., and Plastria, F., (1981), Non-hierarchical two-way clustering, working paper, University of Brussels. [2.5.4] Google Scholar Kaufman, L., and Rousseeuw, P. J., (1986), Clustering large data sets (with discussion), in Pattern Recognition in Practice II, edited by E. S. Gelsema and L. N. Kanal, Elsevier/North-Holland, Amsterdam, pp. 425– 437. [3.1, 3.4.1] CrossrefGoogle Scholar Kaufman, L., and Rousseeuw, P. J., (1987), Clustering by means of medoids, in Statistical Data Analysis based on the L1 Norm, edited by Y. Dodge, Elsevier/North-Holland, Amsterdam. pp. 405– 416. [2.1, 2.5.5] Google Scholar Kaufman, L., Rousseeuw, P. J., Hopke, Ph. K., Massart, D. L., and Derde, M., (1985), Clustering a large data set containing outliers, ASA Proc. Stat. Comp. Section, American Statistical Association, Alexandria, Virginia, pp. 108– 112. [3.4.4] Google Scholar Kent, Ph., (1984), A comment on icicles, Amer. Statistician, 38, 162– 163. [5.5.3] Google Scholar Kent, Ph., (1985), An efficient new way to represent multi-dimensional data, Computer J., 28, 184– 190. [5.5.3] CrossrefWeb of Science®Google Scholar Klastorin, T. D., (1985), The p-median problem for cluster analysis: A comparative test using the mixture model approach, Management Sci., 31, 84– 95. [2.5.1] CrossrefWeb of Science®Google Scholar Kleiner, B., and Hartigan, J. A., (1981), Representing points in many dimensions by trees and castles (with discussion), J. Amer. Statist. Assoc., 76, 260– 276. [5.5.3] CrossrefWeb of Science®Google Scholar Kraus, W., Kraus, D., and Lesinski, J. A., (1980), A simple method of construction and rearrangement of dendrograms, COMPSTAT 4, Physika Verlag, Vienna, pp. 433– 439. [5.1] Google Scholar Kruskal, J. B., and Landwehr, J. M., (1983), Icicle plots: Better displays for hierarchical clustering, Amer. Statistician, 37, 162– 168. [5.1, 5.5.3] CrossrefWeb of Science®Google Scholar Kruskal, J. B., and Landwehr, J. M., (1984), Reply to a note by Ph. Kent, Amer. Statistician, 38, 163. [5.5.3] Google Scholar Kuiper, F. K., and Fisher, L., (1975), A Monte Carlo comparison of six clustering procedures, Biometrics, 31, 777– 783. [5.5.2] CrossrefWeb of Science®Google Scholar Lambert, J. M., and Williams, W. T., (1962), Multivariate methods in plant ecology. IV. Nodal analysis, J. Ecology, 50, 775– 802. [7.5.1] CrossrefWeb of Science®Google Scholar Lambert, J. M., and Williams, W. T., (1966), Multivariate methods in plant ecology. VI. Comparison of information-analysis and association-analysis, J. Ecology, 54, 635– 664. [7.5.1] CrossrefWeb of Science®Google Scholar Lance, G. N., and Williams, W. T., (1965), Computer programs for monothetic classification (association analysis), Computer J., 8, 246– 249. [7.5.1] CrossrefWeb of Science®Google Scholar Lance, G. N., and Williams, W. T., (1966a), Computer programs for hierarchical polythetic classification, Computer J., 9, 60– 64. [5.5.1, 6.5.1, 6.5.2] CrossrefWeb of Science®Google Scholar Lance, G. N., and Williams, W. T., (1966b), A general theory of classificatory sorting strategies: I. Hierarchical systems, Computer J., 9, 373– 380. [5.1, 5.5.1] CrossrefWeb of Science®Google Scholar Lance, G. N., and Williams, W. T., (1968), Note on a new information-statistic classificatory program, Computer J., 11, 195. [7.5.2] CrossrefWeb of Science®Google Scholar Lance, G. N., and Williams, W. T., (1979), INVER: A program for the computation of distance-measures between attributes of mixed types, Austral. Computer J., 11, 27– 28. [1.2.2, 1.2.6] Google Scholar Lecompte, D., Kaufman, L., and Rousseeuw, P. J., (1986), Hierarchical cluster analysis of emotional concerns and personality characteristics in a freshman population, Acta Psychiatrica Belgica, 86, 324– 333. [1.2.2] CASPubMedGoogle Scholar Libert, G., and Roubens, M., (1982), Non-metric fuzzy clustering algorithms and their cluster validity, in Approximate Reasoning in Decision Analysis, edited by M. Gupta and E. Sanchez, North-Holland, Amsterdam. [4.5.2, 4.5.3] Web of Science®Google Scholar Lingoes, J. C., (1967), The multivariate analysis of qualitative data, in Conference on Cluster Analysis of Multivariate Data, edited by M. Lovi and S. B. Lyerly, U. S. Department of Commerce, Springfield, Virginia. [1.2.5] Google Scholar Macnaughton-Smith, P., (1965), Some statistical and other numerical techniques for classifying individuals, Home Office Research Unit Report No. 6, Her Majesty's Stationery Office, London. [5.5.1, 7.5.2] Google Scholar Macnaughton-Smith, P., Williams, W. T., Dale, M. B., and Mockett, L. G., (1964), Dissimilarity analysis: A new technique of hierarchical sub-division, Nature, 202, 1034– 1035. [6.1, 6.4.1, 6.5.1, 7.5.3] CrossrefCASPubMedWeb of Science®Google Scholar MacQueen, J., (1967), Some methods for classification and analysis of multivariate observations, 5th Berkeley Symp. Math. Statist. Prob., edited by L. Le Cam and J. Neyman, Volume 1, pp. 281– 297. [2.5.3, 6.5.2] Google Scholar Massart, D. L., and Kaufman, L., (1983), The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis, Wiley-Interscience, New York. [2.5.3] Google Scholar Massart, D. L., Plastria, F., and Kaufman, L., (1983), Non-hierarchical clustering with MASLOC, Pattern Recognition, 16, 507– 516. [2.5.1] CrossrefWeb of Science®Google Scholar McQuitty, L. L., (1960), Hierarchical linkage analysis for the isolation of types, Ed. Psychol. Measurement, 20, 55– 67. [5.5.1] CrossrefWeb of Science®Google Scholar Miller, G. A., and Nicely, P. E., (1955), An analysis of perceptual confusions among some English consonants, J. Acoust. Soc. Amer., 27, 338– 352. [1.2.2] CrossrefPubMedWeb of Science®Google Scholar Milligan, G. W., (1980), An examination of the effect of six types of error perturbation on fifteen clustering algorithms, Psychometrika, 45, 325– 342. [2.5.5] CrossrefWeb of Science®Google Scholar Milligan, G. W., and Cooper, M. C., (1985), An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159– 179. [2.2.2] CrossrefWeb of Science®Google Scholar Milligan, G. W., and Cooper, M. C., (1988), A study of standardization of variables in cluster analysis, J. Classification, 5, 181– 204. [1.2.1] CrossrefWeb of Science®Google Scholar Milligan, G. W., and Isaac, P. D., (1980), The validation of four ultrametric clustering algorithms, Pattern Recognition, 12, 41– 50. [5.5.1, 5.5.2] CrossrefWeb of Science®Google Scholar Mojena, R., (1977), Hierarchical grouping methods and stopping rules: An evaluation, Computer J., 20, 359– 363. [5.1] CrossrefWeb of Science®Google Scholar Moreau, J. V., and Jain, A. K., (1987), The bootstrap approach to clustering, in Pattern Recognition: Theory and Applications, edited by P. A. Devijver and J. Kittler, NATO ASI Series F: Computer and Systems Sciences, Volume 30, Springer, Berlin, pp. 63– 71. [2.5.1] CrossrefGoogle Scholar Müller, D. W., and Sawitzki, G., (1987), Using excess mass estimates to investigate the modality of a distribution, preprint no. 398, University of Heidelberg, Germany. [2.5.1] Google Scholar Mulvey, J., and Cowder, H., (1979), Cluster analysis: An application of Lagrangian relaxation, Management Sci., 25, 329– 340. [2.5.1] CrossrefWeb of Science®Google Scholar Openshaw, S., (1980), Monothetic divisive algorithms for classifying large data sets, COMPSTAT 4, Physika Verlag, Vienna, pp. 419– 425. [3.5.2, 7.5.2] Google Scholar Plastria, F., (1986), Two hierarchies associated with each clustering scheme, Pattern Recognition, 19, 193– 196. [2.5.1] CrossrefWeb of Science®Google Scholar Rao, M. R., (1971), Cluster analysis and mathematical programming, J. Amer. Statist. Assoc., 66, 622– 626. [2.5.1] Web of Science®Google Scholar Rogers, D. J., and Tanimoto, T. T., (1960), A computer program for classifying plants, Science, 132, 1115– 1118. [1.2.4] CrossrefCASPubMedWeb of Science®Google Scholar Rohlf, M. E., (1978), A probabilistic minimum spanning tree algorithm, Inform. Process. Lett., 8, 44– 49. [3.5.2] CrossrefGoogle Scholar Romesburg, H. C., (1984), Cluster Analysis for Researchers, Lifetime Learning Publications, Belmont, California. [1.2.6, l.ex] CrossrefGoogle Scholar Roubens, M., (1978), Pattern classification problems and fuzzy sets, Fuzzy Sets and Systems, 1, 239– 253. [4.5.1] CrossrefGoogle Scholar Roubens, M., (1982), Fuzzy clustering algorithms and their cluster validity, European J. Operat. Res., 10, 294– 301. [4.4.1] CrossrefWeb of Science®Google Scholar Rousseeuw, P. J., (1983a), Multivariate estimation with high breakdown point, paper presented at the Fourth Pannonian Symposium on Mathematical Statistics, Bad Tatzmannsdorf, Austria, 4–9 September. Appeared in Mathematical Statistics and Applications, edited by W. Grossmann, G. Pflug, I. Vincze, and W. Wertz, Reidel, Dordrecht, pp. 283– 297, (1985). [5.5.2] Google Scholar Rousseeuw, P. J., (1983b), Automatic data classification on micro computers, 44th Meeting of the ISI, Madrid, 12–22 September, Contributed Papers Volume, pp. 75– 78. [6.5.1] Google Scholar Rousseeuw, P. J., (1984), Least median of squares regression, J. Amer. Statist. Assoc., 79, 871– 880. [3.5.3, 6.3] CrossrefWeb of Science®Google Scholar Rousseeuw, P. J., (1985), Some thoughts on agglomerative cluster analysis, Centennial Meeting of the ISI, Amsterdam, 12–22 August, contributed papers volume, pp. 39– 40. [5.5.2] Google Scholar Rousseeuw, P. J., (1986), A visual display for hierarchical classification, in Data Analysis and Informatics 4, edited by E. Diday, Y. Escoufier, L. Lebart, J. Pages, Y. Schektman, and R. Tomassone, North-Holland, Amsterdam, pp. 743– 748. [5.1, 6.1] Google Scholar Rousseeuw, P. J., (1987), Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53– 65. [2.2.2, 2.5.6] CrossrefWeb of Science®Google Scholar Rousseeuw, P. J., Derde, M. P., and Kaufman, L., (1989), Principal components of a fuzzy clustering, Trends in Analytical Chemistry, 8, 249– 250. [4.5.4] CrossrefWeb of Science®Google Scholar Rousseeuw, P. J., and Leroy, A. M., (1987), Robust Regression and Outlier Detection, Wiley-Interscience, New York. [5.5.2, 6.3] Wiley Online LibraryGoogle Scholar Roux, M., (1985), Algorithmes de Classification, Masson, Paris. [6.5.2] Google Scholar Rubin, J., (1967), Optimal classification into groups: An approach for solving the taxonomy problem, J. Theoret. Biology, 15, 103– 144. [1.2.6] CrossrefCASPubMedWeb of Science®Google Scholar Ruspini, E. H., (1970), Numerical methods for fuzzy clustering, Inform. Sci., 2, 319– 350. [2.3, 4.3] CrossrefWeb of Science®Google Scholar Ryder, B. G., (1974), The PFORT verifier, Software-Practice and Experience, 4, 359– 378. [Appendix. 1] Wiley Online LibraryGoogle Scholar Shepard, R. N., (1974), Representation of structure in similarity data: Problems and prospects, Psychometrika, 39, 373– 421. [5.5.3] CrossrefWeb of Science®Google Scholar Sibson, R., (1970), A model for taxonomy II, Math. Biosci., 6, 405– 430. [5.5.2] CrossrefGoogle Scholar Sibson, R., (1971), Some observations on a paper by Lance and Williams, Computer J., 14, 156– 157. [5.5.2] CrossrefWeb of Science®Google Scholar Sibson, R., (1972), Order invariant methods for data analysis (with discussion), J. Roy. Statist. Soc, Ser. B, 34, 311– 349. [5.5.1] Wiley Online LibraryWeb of Science®Google Scholar Sibson, R., (1973), SLINK: An optimally efficient algorithm for the single-link cluster method, Computer J., 16, 30– 35. [3.5.2, 5.5.2] CrossrefWeb of Science®Google Scholar Sneath, P. H. A., (1957a), Some thoughts on bacterial classifications, J. General Microbiology, 17, 184– 200. [1.2.4] CrossrefCASPubMedWeb of Science®Google Scholar Sneath, P. H. A., (1957b), The application of computers to taxonomy, J. General Microbiology, 17, 201– 226. [5.5.1] CrossrefCASPubMedWeb of Science®Google Scholar Sneath, P. H. A., (1962), The construction of taxonomic groups, in Microbiological Classification, edited by G. C. Ainsworth and P. H. A. Sneath, Cambridge University Press, pp. 289– 332. [1.2.4] Google Scholar Sneath, P. H. A., (1966), A comparison of different clustering methods as applied to randomly-spaced points, Classification Soc. Bull., 1, 2– 18. [5.5.2] Google Scholar Sokal, R. R., (1966), Numerical taxonomy, Scientific American, December, pp. 106– 116. [1.3, 2.5.6] Google Scholar Sokal, R. R., and Michener, C. D., (1958), A statistical method for evaluating systematic relationships, Univ. Kansas Sci. Bull., 38, 1409– 1438. [1.2.4, 1.2.5, 5.1, 5.4.1, 5.5.1] Web of Science®Google Scholar Sokal, R. R., and Sneath, P. H. A., (1963), Principles of Numerical Taxonomy, Freeman, San Francisco. [1.2.4, 5.5.1] Web of Science®Google Scholar Sorensen, T., (1948), A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation of Danish commons, Biol. Skrifter, 5, 1– 34. [1.2.4] Google Scholar Späth, H., (1980), Cluster Analysis Algorithms, Ellis Horwood Limited, Chichester. [2.5.3, 5.5.1] Google Scholar Steinhausen, D., and Langer, K., (1977), Clusteranafyse: Einfuhrung in Methoden und Verfahren der automatischen Klassifikation, De Gruyter, Berlin. [3.5.1, 5.5.1, 6.5.2] CrossrefGoogle Scholar Trauwaert, E., (1987), L1 in fuzzy clustering, in Statistical Data Analysis Based on the L1, Norm, edited by Y. Dodge, Elsevier/North-Holland, Amsterdam, pp. 417– 426. [4.5.2] Google Scholar Trauwaert, E., (1988), On the meaning of Dunn's partition coefficient for fuzzy clusters, Fuzzy Sets and Systems, 25, 217– 242. [4.5.3] CrossrefWeb of Science®Google Scholar Tucker, L. R., (1964), The extension of factor analysis to three-dimensional matrices, in Contributions to Mathematical Psychology, edited by N. Frederiksen and H. Gulliksen; Holt, Rinehart and Winston, New York. [1.2] Google Scholar Van Ness, J. W., (1973), Admissible clustering procedures, Biometrika, 60, 422– 424. [5.5.2] CrossrefWeb of Science®Google Scholar van Rijsbergen, C. J., (1970), A clustering algorithm, Computer J., 13, 113– 115. [5.5.1] Google Scholar van Zomeren, B., (1985), A fast agglomerative clustering algorithm, Technical Report No. 85–19, Faculty of Mathematics and Informatics, Delft University of Technology. [5.4.2] Google Scholar Vinod, H., (1969), Integer programming and the theory of grouping, J. Amer. Statist. Assoc., 64, 506– 517. [2.5.1] CrossrefWeb of Science®Google Scholar Wainer, H., (1983), On multivariate display, in Recent Advances in Statistics, edited by M. H. Rizzi, J. S. Rustagi, and D. Siegmund, Academic, New York, pp. 469– 508. [2.5.6] Google Scholar Ward, J. H. Jr., (1963), Hierarchical grouping to optimize an objective function, J. Amer. Statist. Assoc., 58, 236– 244. [5.5.1, 5.5.3] CrossrefWeb of Science®Google Scholar Wegman, E. J., (1985), Hyperdimensional data analysis and the estimation of manifolds, Centennial Meeting of the ISI, Amsterdam, 12–22 August, contributed papers volume, pp. 205– 206. [2.5.6] Google Scholar Williams, W. T., and Lambert, J. M., (1959), Multivariate methods in plant ecology. I. Association-analysis in plant communities, J. Ecology, 47, 83– 101. [7.5, 7.5.1] CrossrefWeb of Science®Google Scholar Williams, W. T., and Lambert, J. M., (1960), Multivariate methods in plant ecology. II. The use of an electronic digital computer for association-analysis, J. Ecology, 48, 689– 710. [7.5.1] CrossrefWeb of Science®Google Scholar Williams, W. T., and Lambert, J. M., (1961), Multivariate methods in plant ecology. III. Inverse association-analysis, J. Ecology, 49, 717– 729. [7.5.1] CrossrefWeb of Science®Google Scholar Williams, W. T., Lambert, J. M., and Lance, G. N., (1966), Multivariate methods in plant ecology. V. Similarity analyses and information-analysis, J. Ecology, 54, 427– 445. [7.5.1] CrossrefWeb of Science®Google Scholar Wirth, M. G., Estabrook, G. F., and Rogers, D. J., (1966), A graph theory model for systematic biology, with an example for the Oncidiinae (Orchidaceae), Systematic Zoology, 15, 59– 69. [5.5.3] CrossrefGoogle Scholar Wish, M., (1970), Comparisons among multidimensional structures of nations based on different measures of subjective similarity, General Systems, 15, 55– 65. [2.3] Web of Science®Google Scholar Wishart, D., (1969a), Mode analysis: A generalization of nearest neighbour which reduces chaining effects, in Numerical Taxonomy, edited by A. J. Cole, Academic, London, pp. 282– 311. [2.5.4, 5.5.1] Google Scholar Wishart, D., (1969b), An algorithm for hierarchical classification, Biometrics, 25, 165– 170. [5.5.1] CrossrefWeb of Science®Google Scholar Wishart, D., (1978), CLUSTAN User Manual, 3rd ed., Program Library Unit, University of Edinburgh, January 1978. [2.5.3, 5.5.3, 7.5.2] Google Scholar Wolfe, J. H., (1970), Pattern clustering by multivariate mixture analysis, Multivariate Behavior Res., 5, 329– 350. [2.5.4] CrossrefCASPubMedGoogle Scholar Zubin, T., (1938), A technique for measuring like-mindedness, J. Abnorm. Soc. Psychol., 33, 508– 516. [1.2.4] CrossrefWeb of Science®Google Scholar Zupan, J., (1982), Clustering of Large Data Sets, Research Studies Press, Chichester. [3.5.2] Google Scholar Finding Groups in Data: An Introduction to Cluster Analysis ReferencesRelatedInformation" @default.
- W4255349002 created "2022-05-12" @default.
- W4255349002 date "1990-03-08" @default.
- W4255349002 modified "2023-09-29" @default.
- W4255349002 title "References" @default.
- W4255349002 cites W108464071 @default.
- W4255349002 cites W1270205671 @default.
- W4255349002 cites W149937420 @default.
- W4255349002 cites W1536435327 @default.
- W4255349002 cites W153769189 @default.
- W4255349002 cites W156509570 @default.
- W4255349002 cites W1773293519 @default.
- W4255349002 cites W1963752964 @default.
- W4255349002 cites W1966202359 @default.
- W4255349002 cites W1968922357 @default.
- W4255349002 cites W1970533835 @default.
- W4255349002 cites W1972327596 @default.
- W4255349002 cites W1975152892 @default.
- W4255349002 cites W1975552235 @default.
- W4255349002 cites W1977554562 @default.
- W4255349002 cites W1979161711 @default.
- W4255349002 cites W1979372206 @default.
- W4255349002 cites W1985314134 @default.
- W4255349002 cites W1987869189 @default.
- W4255349002 cites W1987971958 @default.
- W4255349002 cites W1988664137 @default.
- W4255349002 cites W1990368529 @default.
- W4255349002 cites W1991836023 @default.
- W4255349002 cites W1992121177 @default.
- W4255349002 cites W1992724796 @default.
- W4255349002 cites W1997648776 @default.
- W4255349002 cites W1998266257 @default.
- W4255349002 cites W1998871699 @default.
- W4255349002 cites W1999597013 @default.
- W4255349002 cites W2000562575 @default.
- W4255349002 cites W2001860992 @default.
- W4255349002 cites W2005650444 @default.
- W4255349002 cites W2007995029 @default.
- W4255349002 cites W2009963083 @default.
- W4255349002 cites W2016381774 @default.
- W4255349002 cites W2018359542 @default.
- W4255349002 cites W2019179552 @default.
- W4255349002 cites W2019815170 @default.
- W4255349002 cites W2022337843 @default.
- W4255349002 cites W2024940657 @default.
- W4255349002 cites W2024959238 @default.
- W4255349002 cites W2026265322 @default.
- W4255349002 cites W2026513874 @default.
- W4255349002 cites W2026882380 @default.
- W4255349002 cites W2027305455 @default.
- W4255349002 cites W2029248817 @default.
- W4255349002 cites W2030644393 @default.
- W4255349002 cites W2036328877 @default.
- W4255349002 cites W2043748512 @default.
- W4255349002 cites W2046778278 @default.
- W4255349002 cites W2052167135 @default.
- W4255349002 cites W2053477750 @default.
- W4255349002 cites W2054243197 @default.
- W4255349002 cites W2054541372 @default.
- W4255349002 cites W2054787086 @default.
- W4255349002 cites W2055101717 @default.
- W4255349002 cites W2056119974 @default.
- W4255349002 cites W2056884786 @default.
- W4255349002 cites W2061874589 @default.
- W4255349002 cites W2064751934 @default.
- W4255349002 cites W2067628693 @default.
- W4255349002 cites W2068640436 @default.
- W4255349002 cites W2068937739 @default.
- W4255349002 cites W2070276317 @default.
- W4255349002 cites W2070771945 @default.
- W4255349002 cites W2073852371 @default.
- W4255349002 cites W2074197013 @default.
- W4255349002 cites W2075500727 @default.
- W4255349002 cites W207910289 @default.
- W4255349002 cites W2082612735 @default.
- W4255349002 cites W2082823924 @default.
- W4255349002 cites W2082827056 @default.
- W4255349002 cites W2086489009 @default.
- W4255349002 cites W2088101934 @default.
- W4255349002 cites W2088879945 @default.
- W4255349002 cites W2089923519 @default.
- W4255349002 cites W2103682712 @default.
- W4255349002 cites W2104146802 @default.
- W4255349002 cites W2107946060 @default.
- W4255349002 cites W2118570622 @default.
- W4255349002 cites W2119887796 @default.
- W4255349002 cites W2120636855 @default.
- W4255349002 cites W2120993411 @default.
- W4255349002 cites W2122690888 @default.
- W4255349002 cites W2127859636 @default.
- W4255349002 cites W2145069199 @default.
- W4255349002 cites W2146225536 @default.
- W4255349002 cites W2149596792 @default.
- W4255349002 cites W2152701363 @default.
- W4255349002 cites W2153077944 @default.
- W4255349002 cites W2154225873 @default.
- W4255349002 cites W2155414712 @default.
- W4255349002 cites W2158307450 @default.