Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255365793> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4255365793 abstract "K-Nets is a deterministic clustering algorithm based on the network structure. It can automatically detect the sym-metric structure in the data and can be used to process clusters of different sizes, shapes or a specific number. However, K-Nets has the following shortcomings: (1) the clustering result is more sensitive to the manually input parameter K, so the accuracy will be affected; (2) the algorithm only considers the average distance of K-nearest neighbors, which may lead to some wrong distribution center points in the dataset with large density difference or the same score values during calculation; (3) it does not consider the privacy leakage during the clustering process. To solve the above problems, we propose a differential privacy protection method in adaptive K-Nets clustering, called ADP-K-Nets. Firstly, for reducing the influence of the parameters on the result, the natural eigenvalues are adaptively obtained through the characteristic of the natural neighbors and used as parameter values to find data points. Then we define a new method for calculating the score, which can solve the problem of incorrectly selecting cluster centers when there are large density differences or conflicts in the calculation process. Also, the Laplace noise is added in calculating the local density of every data point to protect data privacy. Experimental results show that our method ensures the performance of clustering compared with some existing algorithms." @default.
- W4255365793 created "2022-05-12" @default.
- W4255365793 creator A5019657990 @default.
- W4255365793 creator A5037037839 @default.
- W4255365793 creator A5038327152 @default.
- W4255365793 creator A5051416661 @default.
- W4255365793 creator A5067342400 @default.
- W4255365793 date "2021-10-01" @default.
- W4255365793 modified "2023-09-26" @default.
- W4255365793 title "Differential Privacy Preservation in Adaptive K-Nets Clustering" @default.
- W4255365793 doi "https://doi.org/10.1109/trustcom53373.2021.00068" @default.
- W4255365793 hasPublicationYear "2021" @default.
- W4255365793 type Work @default.
- W4255365793 citedByCount "0" @default.
- W4255365793 crossrefType "proceedings-article" @default.
- W4255365793 hasAuthorship W4255365793A5019657990 @default.
- W4255365793 hasAuthorship W4255365793A5037037839 @default.
- W4255365793 hasAuthorship W4255365793A5038327152 @default.
- W4255365793 hasAuthorship W4255365793A5051416661 @default.
- W4255365793 hasAuthorship W4255365793A5067342400 @default.
- W4255365793 hasConcept C11413529 @default.
- W4255365793 hasConcept C124101348 @default.
- W4255365793 hasConcept C154945302 @default.
- W4255365793 hasConcept C23130292 @default.
- W4255365793 hasConcept C33704608 @default.
- W4255365793 hasConcept C33923547 @default.
- W4255365793 hasConcept C41008148 @default.
- W4255365793 hasConcept C73555534 @default.
- W4255365793 hasConcept C94641424 @default.
- W4255365793 hasConceptScore W4255365793C11413529 @default.
- W4255365793 hasConceptScore W4255365793C124101348 @default.
- W4255365793 hasConceptScore W4255365793C154945302 @default.
- W4255365793 hasConceptScore W4255365793C23130292 @default.
- W4255365793 hasConceptScore W4255365793C33704608 @default.
- W4255365793 hasConceptScore W4255365793C33923547 @default.
- W4255365793 hasConceptScore W4255365793C41008148 @default.
- W4255365793 hasConceptScore W4255365793C73555534 @default.
- W4255365793 hasConceptScore W4255365793C94641424 @default.
- W4255365793 hasFunder F4320321001 @default.
- W4255365793 hasLocation W42553657931 @default.
- W4255365793 hasOpenAccess W4255365793 @default.
- W4255365793 hasPrimaryLocation W42553657931 @default.
- W4255365793 hasRelatedWork W10939515 @default.
- W4255365793 hasRelatedWork W1100367 @default.
- W4255365793 hasRelatedWork W11405185 @default.
- W4255365793 hasRelatedWork W12102633 @default.
- W4255365793 hasRelatedWork W12128330 @default.
- W4255365793 hasRelatedWork W13019021 @default.
- W4255365793 hasRelatedWork W2283060 @default.
- W4255365793 hasRelatedWork W3960955 @default.
- W4255365793 hasRelatedWork W4808419 @default.
- W4255365793 hasRelatedWork W8325450 @default.
- W4255365793 isParatext "false" @default.
- W4255365793 isRetracted "false" @default.
- W4255365793 workType "article" @default.