Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255649097> ?p ?o ?g. }
- W4255649097 endingPage "126" @default.
- W4255649097 startingPage "102" @default.
- W4255649097 abstract "In this chapter, the authors review a variety of algorithms developed by different groups for automatically segmenting structures in medical images, such as brain MRI scans. Some of the simpler methods, based on active contours, deformable image registration, and anisotropic Markov random fields, have known weaknesses, which can be largely overcome by learning methods that better encode knowledge on anatomical variability. The authors show how the anatomical segmentation problem may be re-cast in a Bayesian framework. They then present several different learning techniques increasing in complexity until they derive two algorithms recently proposed by the authors. The authors show how these automated algorithms are validated empirically, by comparison with segmentations by experts, which serve as independent ground truth, and in terms of their power to detect disease effects in Alzheimer’s disease. They show how these methods can be used to investigate factors that influence disease progression in databases of thousands of images. Finally the authors indicate some promising directions for future work." @default.
- W4255649097 created "2022-05-12" @default.
- W4255649097 creator A5001760915 @default.
- W4255649097 creator A5003523497 @default.
- W4255649097 creator A5014949118 @default.
- W4255649097 creator A5057034767 @default.
- W4255649097 date "2010-05-25" @default.
- W4255649097 modified "2023-09-23" @default.
- W4255649097 title "Machine Learning for Brain Image Segmentation" @default.
- W4255649097 cites W1496702904 @default.
- W4255649097 cites W1503893179 @default.
- W4255649097 cites W1529840045 @default.
- W4255649097 cites W1607449463 @default.
- W4255649097 cites W1965393391 @default.
- W4255649097 cites W1970855517 @default.
- W4255649097 cites W1973637437 @default.
- W4255649097 cites W1974014454 @default.
- W4255649097 cites W1974824465 @default.
- W4255649097 cites W1975846642 @default.
- W4255649097 cites W1988963873 @default.
- W4255649097 cites W1991113069 @default.
- W4255649097 cites W1999945947 @default.
- W4255649097 cites W2000178490 @default.
- W4255649097 cites W2004293194 @default.
- W4255649097 cites W2027246093 @default.
- W4255649097 cites W2027955893 @default.
- W4255649097 cites W2029214174 @default.
- W4255649097 cites W2032977736 @default.
- W4255649097 cites W2034570192 @default.
- W4255649097 cites W2041398617 @default.
- W4255649097 cites W2042070546 @default.
- W4255649097 cites W2042885239 @default.
- W4255649097 cites W2066462635 @default.
- W4255649097 cites W2072008263 @default.
- W4255649097 cites W2078524519 @default.
- W4255649097 cites W2086456561 @default.
- W4255649097 cites W2086683689 @default.
- W4255649097 cites W2087322538 @default.
- W4255649097 cites W2091403921 @default.
- W4255649097 cites W2094479815 @default.
- W4255649097 cites W2094703873 @default.
- W4255649097 cites W2099326256 @default.
- W4255649097 cites W2102099319 @default.
- W4255649097 cites W2108500173 @default.
- W4255649097 cites W2109077768 @default.
- W4255649097 cites W2117468830 @default.
- W4255649097 cites W2118891573 @default.
- W4255649097 cites W2123197173 @default.
- W4255649097 cites W2127890285 @default.
- W4255649097 cites W2137951557 @default.
- W4255649097 cites W2139454269 @default.
- W4255649097 cites W2141796362 @default.
- W4255649097 cites W2143808047 @default.
- W4255649097 cites W2145284489 @default.
- W4255649097 cites W2148347694 @default.
- W4255649097 cites W2151050383 @default.
- W4255649097 cites W2153996202 @default.
- W4255649097 cites W2154778070 @default.
- W4255649097 cites W2157848968 @default.
- W4255649097 cites W2162630772 @default.
- W4255649097 cites W2164225814 @default.
- W4255649097 cites W2165335408 @default.
- W4255649097 cites W2165677325 @default.
- W4255649097 cites W2616101183 @default.
- W4255649097 cites W3097096317 @default.
- W4255649097 cites W4230674625 @default.
- W4255649097 cites W4247942956 @default.
- W4255649097 doi "https://doi.org/10.4018/978-1-60566-956-4.ch005" @default.
- W4255649097 hasPublicationYear "2010" @default.
- W4255649097 type Work @default.
- W4255649097 citedByCount "1" @default.
- W4255649097 countsByYear W42556490972013 @default.
- W4255649097 crossrefType "book-chapter" @default.
- W4255649097 hasAuthorship W4255649097A5001760915 @default.
- W4255649097 hasAuthorship W4255649097A5003523497 @default.
- W4255649097 hasAuthorship W4255649097A5014949118 @default.
- W4255649097 hasAuthorship W4255649097A5057034767 @default.
- W4255649097 hasConcept C104317684 @default.
- W4255649097 hasConcept C107673813 @default.
- W4255649097 hasConcept C119857082 @default.
- W4255649097 hasConcept C124504099 @default.
- W4255649097 hasConcept C125308379 @default.
- W4255649097 hasConcept C136197465 @default.
- W4255649097 hasConcept C144133560 @default.
- W4255649097 hasConcept C146849305 @default.
- W4255649097 hasConcept C152565575 @default.
- W4255649097 hasConcept C153180895 @default.
- W4255649097 hasConcept C154945302 @default.
- W4255649097 hasConcept C162853370 @default.
- W4255649097 hasConcept C185592680 @default.
- W4255649097 hasConcept C2778045648 @default.
- W4255649097 hasConcept C31972630 @default.
- W4255649097 hasConcept C41008148 @default.
- W4255649097 hasConcept C55493867 @default.
- W4255649097 hasConcept C66746571 @default.
- W4255649097 hasConcept C89600930 @default.
- W4255649097 hasConceptScore W4255649097C104317684 @default.
- W4255649097 hasConceptScore W4255649097C107673813 @default.