Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255654734> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4255654734 endingPage "205" @default.
- W4255654734 startingPage "199" @default.
- W4255654734 abstract "We study the application of artificial neural networks (ANNs) to the classification of spectra from impact-echo signals. In this paper we focus on analyses from experiments. Simulation results are covered in paper I. Impact-echo is a procedure from Non-Destructive Evaluation where a material is excited by a hammer impact which produces a response from the material microstructure. This response is sensed by a set of transducers located on material surface. Measured signals contain backscattering from grain microstructure and information of flaws in the material inspected (Sansalone & Street, 1997). The physical phenomenon of impact-echo corresponds to wave propagation in solids. When a disturbance (stress or displacement) is applied suddenly at a point on the surface of a solid, such as by impact, the disturbance propagates through the solid as three different types of stress waves: a P-wave, an S-wave, and an R-wave. The P-wave is associated with the propagation of normal stress and the S-wave is associated with shear stress, both of them propagate into the solid along spherical wave fronts. In addition, a surface wave, or Rayleigh wave (R-wave) travels throughout a circular wave front along the material surface (Carino, 2001). After a transient period where the first waves arrive, wave propagation becomes stationary in resonant modes of the material that vary depending on the defects inside the material. In defective materials propagated waves have to surround the defects and their energy decreases, and multiple reflections and diffraction with the defect borders become reflected waves (Sansalone, Carino, & Hsu, 1998). Depending on the observation time and the sampling frequency used in the experiments we may be interested in analyzing the transient or the stationary stage of the wave propagation in impact- echo tests. Usually with high resolution in time, analyzes of wave propagation velocity can give useful information, for instance, to build a tomography of a material inspected from different locations. Considering the sampling frequency that we used in the experiments (100 kHz), a feature extracted from the signal as the wave propagation velocity is not accurate enough to discern between homogeneous and different kind of defective materials. The data set for this research consists of sonic and ultrasonic impact-echo signal (1-27 kHz) spectra obtained from 84 parallelepiped-shape (7x5x22cm. width, height and length) lab specimens of aluminium alloy series 2000. These spectra, along with a categorization of the quality of materials among homogeneous, one-defect and multiple-defect classes were used to develop supervised neural network classifiers. We show that neural networks yield good classifications (" @default.
- W4255654734 created "2022-05-12" @default.
- W4255654734 creator A5003233147 @default.
- W4255654734 creator A5077446531 @default.
- W4255654734 date "2011-05-24" @default.
- W4255654734 modified "2023-09-27" @default.
- W4255654734 title "Automatic Classification of Impact-Echo Spectra II" @default.
- W4255654734 doi "https://doi.org/10.4018/978-1-59904-849-9.ch031" @default.
- W4255654734 hasPublicationYear "2011" @default.
- W4255654734 type Work @default.
- W4255654734 citedByCount "0" @default.
- W4255654734 crossrefType "book-chapter" @default.
- W4255654734 hasAuthorship W4255654734A5003233147 @default.
- W4255654734 hasAuthorship W4255654734A5077446531 @default.
- W4255654734 hasConcept C120665830 @default.
- W4255654734 hasConcept C121332964 @default.
- W4255654734 hasConcept C127313418 @default.
- W4255654734 hasConcept C142358356 @default.
- W4255654734 hasConcept C143351421 @default.
- W4255654734 hasConcept C165205528 @default.
- W4255654734 hasConcept C169744125 @default.
- W4255654734 hasConcept C192562407 @default.
- W4255654734 hasConcept C207114421 @default.
- W4255654734 hasConcept C24890656 @default.
- W4255654734 hasConcept C44886760 @default.
- W4255654734 hasConcept C51473458 @default.
- W4255654734 hasConcept C56318395 @default.
- W4255654734 hasConcept C81288441 @default.
- W4255654734 hasConcept C84174578 @default.
- W4255654734 hasConceptScore W4255654734C120665830 @default.
- W4255654734 hasConceptScore W4255654734C121332964 @default.
- W4255654734 hasConceptScore W4255654734C127313418 @default.
- W4255654734 hasConceptScore W4255654734C142358356 @default.
- W4255654734 hasConceptScore W4255654734C143351421 @default.
- W4255654734 hasConceptScore W4255654734C165205528 @default.
- W4255654734 hasConceptScore W4255654734C169744125 @default.
- W4255654734 hasConceptScore W4255654734C192562407 @default.
- W4255654734 hasConceptScore W4255654734C207114421 @default.
- W4255654734 hasConceptScore W4255654734C24890656 @default.
- W4255654734 hasConceptScore W4255654734C44886760 @default.
- W4255654734 hasConceptScore W4255654734C51473458 @default.
- W4255654734 hasConceptScore W4255654734C56318395 @default.
- W4255654734 hasConceptScore W4255654734C81288441 @default.
- W4255654734 hasConceptScore W4255654734C84174578 @default.
- W4255654734 hasLocation W42556547341 @default.
- W4255654734 hasOpenAccess W4255654734 @default.
- W4255654734 hasPrimaryLocation W42556547341 @default.
- W4255654734 hasRelatedWork W1997621 @default.
- W4255654734 hasRelatedWork W25644435 @default.
- W4255654734 hasRelatedWork W26649089 @default.
- W4255654734 hasRelatedWork W27961342 @default.
- W4255654734 hasRelatedWork W30539608 @default.
- W4255654734 hasRelatedWork W46492474 @default.
- W4255654734 hasRelatedWork W5007963 @default.
- W4255654734 hasRelatedWork W51708415 @default.
- W4255654734 hasRelatedWork W51996785 @default.
- W4255654734 hasRelatedWork W6062708 @default.
- W4255654734 isParatext "false" @default.
- W4255654734 isRetracted "false" @default.
- W4255654734 workType "book-chapter" @default.