Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255671176> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4255671176 abstract "<sec> <title>BACKGROUND</title> Approximately 5%-10% of elementary school children show delayed development of fine motor skills. To address these problems, detection is required. Current assessment tools are time-consuming, require a trained supervisor, and are not motivating for children. Sensor-augmented toys and machine learning have been presented as possible solutions to address this problem. </sec> <sec> <title>OBJECTIVE</title> This study examines whether sensor-augmented toys can be used to assess children’s fine motor skills. The objectives were to (1) predict the outcome of the fine motor skill part of the Movement Assessment Battery for Children Second Edition (fine MABC-2) and (2) study the influence of the classification model, game, type of data, and level of difficulty of the game on the prediction. </sec> <sec> <title>METHODS</title> Children in elementary school (n=95, age 7.8 [SD 0.7] years) performed the fine MABC-2 and played 2 games with a sensor-augmented toy called “Futuro Cube.” The game “roadrunner” focused on speed while the game “maze” focused on precision. Each game had several levels of difficulty. While playing, both sensor and game data were collected. Four supervised machine learning classifiers were trained with these data to predict the fine MABC-2 outcome: k-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), and support vector machine (SVM). First, we compared the performances of the games and classifiers. Subsequently, we compared the levels of difficulty and types of data for the classifier and game that performed best on accuracy and F1 score. For all statistical tests, we used α=.05. </sec> <sec> <title>RESULTS</title> The highest achieved mean accuracy (0.76) was achieved with the DT classifier that was trained on both sensor and game data obtained from playing the easiest and the hardest level of the roadrunner game. Significant differences in performance were found in the accuracy scores between data obtained from the roadrunner and maze games (DT, <i>P</i>=.03; KNN, <i>P</i>=.01; LR, <i>P</i>=.02; SVM, <i>P</i>=.04). No significant differences in performance were found in the accuracy scores between the best performing classifier and the other 3 classifiers for both the roadrunner game (DT vs KNN, <i>P</i>=.42; DT vs LR, <i>P</i>=.35; DT vs SVM, <i>P</i>=.08) and the maze game (DT vs KNN, <i>P</i>=.15; DT vs LR, <i>P</i>=.62; DT vs SVM, <i>P</i>=.26). The accuracy of only the best performing level of difficulty (combination of the easiest and hardest level) achieved with the DT classifier trained with sensor and game data obtained from the roadrunner game was significantly better than the combination of the easiest and middle level (<i>P</i>=.046). </sec> <sec> <title>CONCLUSIONS</title> The results of our study show that sensor-augmented toys can efficiently predict the fine MABC-2 scores for children in elementary school. Selecting the game type (focusing on speed or precision) and data type (sensor or game data) is more important for determining the performance than selecting the machine learning classifier or level of difficulty. </sec>" @default.
- W4255671176 created "2022-05-12" @default.
- W4255671176 creator A5004198714 @default.
- W4255671176 creator A5007321507 @default.
- W4255671176 creator A5049349937 @default.
- W4255671176 creator A5077504079 @default.
- W4255671176 creator A5082210114 @default.
- W4255671176 creator A5085880065 @default.
- W4255671176 creator A5086154385 @default.
- W4255671176 date "2020-09-10" @default.
- W4255671176 modified "2023-09-27" @default.
- W4255671176 title "Assessing Children’s Fine Motor Skills With Sensor-Augmented Toys: Machine Learning Approach (Preprint)" @default.
- W4255671176 cites W1551991691 @default.
- W4255671176 cites W1910117258 @default.
- W4255671176 cites W2029948682 @default.
- W4255671176 cites W2032535554 @default.
- W4255671176 cites W2125807454 @default.
- W4255671176 cites W2465353856 @default.
- W4255671176 cites W2547134104 @default.
- W4255671176 cites W2614535584 @default.
- W4255671176 cites W2615682011 @default.
- W4255671176 cites W2616609740 @default.
- W4255671176 cites W2620407043 @default.
- W4255671176 cites W2784237897 @default.
- W4255671176 cites W2793997322 @default.
- W4255671176 cites W2794349357 @default.
- W4255671176 cites W2960158873 @default.
- W4255671176 cites W2970534654 @default.
- W4255671176 doi "https://doi.org/10.2196/preprints.24237" @default.
- W4255671176 hasPublicationYear "2020" @default.
- W4255671176 type Work @default.
- W4255671176 citedByCount "0" @default.
- W4255671176 crossrefType "posted-content" @default.
- W4255671176 hasAuthorship W4255671176A5004198714 @default.
- W4255671176 hasAuthorship W4255671176A5007321507 @default.
- W4255671176 hasAuthorship W4255671176A5049349937 @default.
- W4255671176 hasAuthorship W4255671176A5077504079 @default.
- W4255671176 hasAuthorship W4255671176A5082210114 @default.
- W4255671176 hasAuthorship W4255671176A5085880065 @default.
- W4255671176 hasAuthorship W4255671176A5086154385 @default.
- W4255671176 hasBestOaLocation W42556711762 @default.
- W4255671176 hasConcept C119857082 @default.
- W4255671176 hasConcept C12267149 @default.
- W4255671176 hasConcept C154945302 @default.
- W4255671176 hasConcept C17744445 @default.
- W4255671176 hasConcept C199539241 @default.
- W4255671176 hasConcept C2779110517 @default.
- W4255671176 hasConcept C41008148 @default.
- W4255671176 hasConcept C84525736 @default.
- W4255671176 hasConcept C95623464 @default.
- W4255671176 hasConceptScore W4255671176C119857082 @default.
- W4255671176 hasConceptScore W4255671176C12267149 @default.
- W4255671176 hasConceptScore W4255671176C154945302 @default.
- W4255671176 hasConceptScore W4255671176C17744445 @default.
- W4255671176 hasConceptScore W4255671176C199539241 @default.
- W4255671176 hasConceptScore W4255671176C2779110517 @default.
- W4255671176 hasConceptScore W4255671176C41008148 @default.
- W4255671176 hasConceptScore W4255671176C84525736 @default.
- W4255671176 hasConceptScore W4255671176C95623464 @default.
- W4255671176 hasLocation W42556711761 @default.
- W4255671176 hasLocation W42556711762 @default.
- W4255671176 hasOpenAccess W4255671176 @default.
- W4255671176 hasPrimaryLocation W42556711761 @default.
- W4255671176 hasRelatedWork W10267022 @default.
- W4255671176 hasRelatedWork W1086253 @default.
- W4255671176 hasRelatedWork W3630269 @default.
- W4255671176 hasRelatedWork W4947539 @default.
- W4255671176 hasRelatedWork W621929 @default.
- W4255671176 hasRelatedWork W6310906 @default.
- W4255671176 hasRelatedWork W728297 @default.
- W4255671176 hasRelatedWork W7655147 @default.
- W4255671176 hasRelatedWork W9778490 @default.
- W4255671176 hasRelatedWork W6520261 @default.
- W4255671176 isParatext "false" @default.
- W4255671176 isRetracted "false" @default.
- W4255671176 workType "article" @default.