Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255971538> ?p ?o ?g. }
- W4255971538 abstract "<sec> <title>BACKGROUND</title> Metabolic syndrome (MetS) is a cluster of disorders that significantly influence the development and deterioration of numerous diseases. Although several clinically significant factors leading to MetS are known, the rank order of their relevance, as well as of their importance, is unclear. FibroScan is using ultrasound-based elastography, the controlled attenuation parameter (CAP) score provided to clinicians to suspect patients with fatty liver or not. The use of artificial intelligence in health care, particularly machine learning methods, provides an opportunity to discover underlying patterns and correlations through the learning of data-driven prediction models. </sec> <sec> <title>OBJECTIVE</title> The aim of this study is using machine learning models combined with plenty of electric health records and the CAP score measured by Fibroscan, which is a noninvasive, safe, and rapid device that assesses the hardness of the liver using ultrasound-based elastography. Its portability makes it valuable for bedside inspection in hospitalized patients and population outreach screening. We conduct various statistical learning techniques to visualize and investigate the ranking and importance of risk factors leading to MetS and to identify potential variables. </sec> <sec> <title>METHODS</title> Hypothesis testing and multivariable logistic regression were conducted for every risk factor of MetS. Principle component analysis was used to visualize the distribution of MetS patients after rotation and dimension reduction. Because artificial intelligence has been used in health care, machine learning methods, in particular, have provided a meaningful opportunity to discover underlying patterns and correlations through the learning of data-driven prediction models. We applied various statistical learning techniques to visualize and investigate the pattern and relationship between MetS and several potential variables. </sec> <sec> <title>RESULTS</title> A total of 1,333 relatively healthy participants were enrolled in this study. Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase (γ-GT), CAP score, and glycated hemoglobin (HbA1c) were found to be significant risk factors in multivariable logistic regression. Among these significant variables, the CAP score was as important as obesity in classification of MetS with approximately 290–300 dB/m as a threshold, implying that FibroScan can provide a convenient and rapid test for MetS diagnosis in patients, even though the disease is complicated and progressive. In addition, HbA1c was more reliable and precise for predicting MetS than fasting plasma glucose, with approximately 5.9 as a threshold in decision trees. Liver-related indices, such as asγ-GT, serum glutamic pyruvic transaminase, and liver stiffness score (E score), were also considered important variables in random forest models. The AUC statistics for CRAT and random forest, as obtained by the receiver operating characteristic curve, were 0.831 and 0.904, respectively. Machine learning models combined CAP score and other parameters to analyze important determinants of MetS and then established a prediction model, suggesting a more objective and accurate performance than is possible with traditional analytic models. </sec> <sec> <title>CONCLUSIONS</title> Machine learning technology facilitates the identification of prevalent risk factors for MetS, enabling the rate of MetS to be further reduced. </sec> <sec> <title>CLINICALTRIAL</title> TMU-Joint Institutional Review Board TMU-JIRB No.: N201903080 http://ohr.tmu.edu.tw/2dt2/super_pages.php?ID=2page202 </sec>" @default.
- W4255971538 created "2022-05-12" @default.
- W4255971538 creator A5024459592 @default.
- W4255971538 creator A5031350933 @default.
- W4255971538 creator A5040742713 @default.
- W4255971538 creator A5042171548 @default.
- W4255971538 creator A5042264697 @default.
- W4255971538 creator A5067743175 @default.
- W4255971538 creator A5067916408 @default.
- W4255971538 creator A5083264480 @default.
- W4255971538 date "2019-11-19" @default.
- W4255971538 modified "2023-10-14" @default.
- W4255971538 title "Predicting Metabolic Syndrome and Ranking of Important Factors: Exploiting Machine Learning Models Using Decision Trees and the Controlled Attenuation Parameter Technology. (Preprint)" @default.
- W4255971538 cites W1518653822 @default.
- W4255971538 cites W1564484746 @default.
- W4255971538 cites W1809873675 @default.
- W4255971538 cites W1889306855 @default.
- W4255971538 cites W1964695166 @default.
- W4255971538 cites W1984115557 @default.
- W4255971538 cites W1986975920 @default.
- W4255971538 cites W1991208598 @default.
- W4255971538 cites W1991426267 @default.
- W4255971538 cites W2002957303 @default.
- W4255971538 cites W2010450923 @default.
- W4255971538 cites W2018048740 @default.
- W4255971538 cites W2031385216 @default.
- W4255971538 cites W2032744185 @default.
- W4255971538 cites W2038429516 @default.
- W4255971538 cites W2045803758 @default.
- W4255971538 cites W2047638046 @default.
- W4255971538 cites W2062884568 @default.
- W4255971538 cites W2080422995 @default.
- W4255971538 cites W2081807710 @default.
- W4255971538 cites W2090077439 @default.
- W4255971538 cites W2093904708 @default.
- W4255971538 cites W2097686533 @default.
- W4255971538 cites W2098323046 @default.
- W4255971538 cites W2104890527 @default.
- W4255971538 cites W2107732097 @default.
- W4255971538 cites W2111335059 @default.
- W4255971538 cites W2119908513 @default.
- W4255971538 cites W2123998733 @default.
- W4255971538 cites W2126544953 @default.
- W4255971538 cites W2128420091 @default.
- W4255971538 cites W2130717716 @default.
- W4255971538 cites W2143945764 @default.
- W4255971538 cites W2153476503 @default.
- W4255971538 cites W2155971620 @default.
- W4255971538 cites W2158698691 @default.
- W4255971538 cites W2161062919 @default.
- W4255971538 cites W2167990265 @default.
- W4255971538 cites W2205525005 @default.
- W4255971538 cites W2290550096 @default.
- W4255971538 cites W2341202350 @default.
- W4255971538 cites W2341746096 @default.
- W4255971538 cites W2403970922 @default.
- W4255971538 cites W2590921856 @default.
- W4255971538 cites W2598212308 @default.
- W4255971538 cites W2755312881 @default.
- W4255971538 cites W2772577987 @default.
- W4255971538 cites W2794774499 @default.
- W4255971538 cites W2806584285 @default.
- W4255971538 cites W2809572353 @default.
- W4255971538 cites W2809987777 @default.
- W4255971538 cites W2905644828 @default.
- W4255971538 cites W2915732055 @default.
- W4255971538 cites W2946007593 @default.
- W4255971538 cites W2964315079 @default.
- W4255971538 cites W4244695335 @default.
- W4255971538 cites W4254025109 @default.
- W4255971538 doi "https://doi.org/10.2196/preprints.17110" @default.
- W4255971538 hasPublicationYear "2019" @default.
- W4255971538 type Work @default.
- W4255971538 citedByCount "0" @default.
- W4255971538 crossrefType "posted-content" @default.
- W4255971538 hasAuthorship W4255971538A5024459592 @default.
- W4255971538 hasAuthorship W4255971538A5031350933 @default.
- W4255971538 hasAuthorship W4255971538A5040742713 @default.
- W4255971538 hasAuthorship W4255971538A5042171548 @default.
- W4255971538 hasAuthorship W4255971538A5042264697 @default.
- W4255971538 hasAuthorship W4255971538A5067743175 @default.
- W4255971538 hasAuthorship W4255971538A5067916408 @default.
- W4255971538 hasAuthorship W4255971538A5083264480 @default.
- W4255971538 hasBestOaLocation W42559715382 @default.
- W4255971538 hasConcept C119857082 @default.
- W4255971538 hasConcept C154945302 @default.
- W4255971538 hasConcept C2908647359 @default.
- W4255971538 hasConcept C41008148 @default.
- W4255971538 hasConcept C71924100 @default.
- W4255971538 hasConcept C84525736 @default.
- W4255971538 hasConcept C99454951 @default.
- W4255971538 hasConceptScore W4255971538C119857082 @default.
- W4255971538 hasConceptScore W4255971538C154945302 @default.
- W4255971538 hasConceptScore W4255971538C2908647359 @default.
- W4255971538 hasConceptScore W4255971538C41008148 @default.
- W4255971538 hasConceptScore W4255971538C71924100 @default.
- W4255971538 hasConceptScore W4255971538C84525736 @default.
- W4255971538 hasConceptScore W4255971538C99454951 @default.
- W4255971538 hasLocation W42559715381 @default.
- W4255971538 hasLocation W42559715382 @default.