Matches in SemOpenAlex for { <https://semopenalex.org/work/W4255996415> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4255996415 abstract "Support vector machines (SVMs) have been promising methods for classification and regression analysis because of their solid mathematical foundations which convery several salient properties that other methods hardly provide. However, despite the prominent properties of SVMs, they are not as favored for large-scale data mining as for pattern recognition or machine learning because the training complexity of SVMs is highly dependent on the size of a data set. Many real-world data mining applications involve millions or billions of data records where even multiple scans of the entire data are too expensive to perform. This paper presents a new method, Clustering-Based SVM (CB-SVM), which is specifically designed for handling very large data sets. CB-SVM applies a hierarchical micro-clustering algorithm that scans the entire data set only once to provide an SVM with high quality samples that carry the statistical summaries of the data such that the summaries maximize the benefit of learning the SVM. CB-SVM tries to generate the best SVM boundary for very large data sets given limited amount of resources. Our experiments on synthetic and real data sets show that CB-SVM is highly scalable for very large data sets while also generating high classification accuracy." @default.
- W4255996415 created "2022-05-12" @default.
- W4255996415 creator A5010008442 @default.
- W4255996415 creator A5019539533 @default.
- W4255996415 creator A5045521125 @default.
- W4255996415 date "2003-01-01" @default.
- W4255996415 modified "2023-10-16" @default.
- W4255996415 title "Classifying large data sets using SVMs with hierarchical clusters" @default.
- W4255996415 doi "https://doi.org/10.1145/956755.956786" @default.
- W4255996415 hasPublicationYear "2003" @default.
- W4255996415 type Work @default.
- W4255996415 citedByCount "41" @default.
- W4255996415 countsByYear W42559964152012 @default.
- W4255996415 countsByYear W42559964152013 @default.
- W4255996415 countsByYear W42559964152014 @default.
- W4255996415 countsByYear W42559964152015 @default.
- W4255996415 countsByYear W42559964152017 @default.
- W4255996415 countsByYear W42559964152018 @default.
- W4255996415 countsByYear W42559964152019 @default.
- W4255996415 countsByYear W42559964152020 @default.
- W4255996415 countsByYear W42559964152021 @default.
- W4255996415 countsByYear W42559964152022 @default.
- W4255996415 crossrefType "proceedings-article" @default.
- W4255996415 hasAuthorship W4255996415A5010008442 @default.
- W4255996415 hasAuthorship W4255996415A5019539533 @default.
- W4255996415 hasAuthorship W4255996415A5045521125 @default.
- W4255996415 hasConcept C119857082 @default.
- W4255996415 hasConcept C12267149 @default.
- W4255996415 hasConcept C124101348 @default.
- W4255996415 hasConcept C153180895 @default.
- W4255996415 hasConcept C154945302 @default.
- W4255996415 hasConcept C177264268 @default.
- W4255996415 hasConcept C199360897 @default.
- W4255996415 hasConcept C41008148 @default.
- W4255996415 hasConcept C48044578 @default.
- W4255996415 hasConcept C58489278 @default.
- W4255996415 hasConcept C73555534 @default.
- W4255996415 hasConcept C77088390 @default.
- W4255996415 hasConcept C92835128 @default.
- W4255996415 hasConceptScore W4255996415C119857082 @default.
- W4255996415 hasConceptScore W4255996415C12267149 @default.
- W4255996415 hasConceptScore W4255996415C124101348 @default.
- W4255996415 hasConceptScore W4255996415C153180895 @default.
- W4255996415 hasConceptScore W4255996415C154945302 @default.
- W4255996415 hasConceptScore W4255996415C177264268 @default.
- W4255996415 hasConceptScore W4255996415C199360897 @default.
- W4255996415 hasConceptScore W4255996415C41008148 @default.
- W4255996415 hasConceptScore W4255996415C48044578 @default.
- W4255996415 hasConceptScore W4255996415C58489278 @default.
- W4255996415 hasConceptScore W4255996415C73555534 @default.
- W4255996415 hasConceptScore W4255996415C77088390 @default.
- W4255996415 hasConceptScore W4255996415C92835128 @default.
- W4255996415 hasLocation W42559964151 @default.
- W4255996415 hasOpenAccess W4255996415 @default.
- W4255996415 hasPrimaryLocation W42559964151 @default.
- W4255996415 hasRelatedWork W1559971515 @default.
- W4255996415 hasRelatedWork W1998797251 @default.
- W4255996415 hasRelatedWork W2006241077 @default.
- W4255996415 hasRelatedWork W2231523778 @default.
- W4255996415 hasRelatedWork W2354343136 @default.
- W4255996415 hasRelatedWork W2366487262 @default.
- W4255996415 hasRelatedWork W2370909876 @default.
- W4255996415 hasRelatedWork W2507719931 @default.
- W4255996415 hasRelatedWork W2608158510 @default.
- W4255996415 hasRelatedWork W801795362 @default.
- W4255996415 isParatext "false" @default.
- W4255996415 isRetracted "false" @default.
- W4255996415 workType "article" @default.