Matches in SemOpenAlex for { <https://semopenalex.org/work/W4256123846> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4256123846 abstract "Abstract BackgroundAccurate prediction and early recognition of type II diabetes (T2DM) will lead to timely and meaningful interventions, while preventing T2DM associated complications. In this context, machine learning (ML) is promising, as it can transform vast amount of T2DM data into clinically relevant information. This study compares multiple ML techniques for predictive modelling based on different T2DM associated variables in an African population, Ghana. MethodsThe study involves 219 T2DM patients and 219 healthy individuals who were recruited from the hospital and the local community, respectively. Anthropometric and biochemical information including glycated haemoglobin (HbA1c), body mass index (BMI), blood pressure, fasting blood sugar (FBS), serum lipids [(total cholesterol (TC), triglycerides (TG), high and low-density lipoprotein cholesterol (HDL-c and LDL-c)] were collected. From this data, four ML classification algorithms including Naïve-Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machines (SVM) and Decision Tree (DT) were used to predict T2DM. Precision, Recall, F1-Scores, Receiver Operating Characteristics (ROC) scores and the confusion matrix were computed to determine the performance of the various algorithms while the importance of the feature attributes was determined by recursive feature elimination technique.ResultsAll the classifiers performed beyond the acceptable threshold of 70% for the Precision, Recall, F-score and Accuracy. After building the predictive model, 82% of diabetic test data was detected by the NB classifier, of which 93% were accurately predicted. The SVM classifier was the second-best performing classifier which yielded an overall accuracy of 84%. The non-T2DM test data yielded an accurate prediction score of 75% from the 98% of the proportion of the non-T2DM test data. KNN and DT yielded accuracies of 83% and 81%, respectively. NB has the best performance (AUC=0.87) followed by SVM (AUC= 0.84), KNN (AUC= 0.85) and DT (AUC= 0.81). The best three feature attributes, in order of importance, are HbA1c, TC and BMI whereas the least three importance of the features are Age, HDL-c and LDL-c.ConclusionBased on the predictive performance and high accuracy, the study has shown the potential of ML as a robust forecasting tool for T2DM. Our results can be a benchmark for guiding policy decisions in T2DM surveillance in resource and medical expertise limited countries such as Ghana." @default.
- W4256123846 created "2022-05-12" @default.
- W4256123846 creator A5001569259 @default.
- W4256123846 creator A5004487353 @default.
- W4256123846 creator A5007988075 @default.
- W4256123846 creator A5013997143 @default.
- W4256123846 creator A5020921099 @default.
- W4256123846 creator A5031837478 @default.
- W4256123846 creator A5046597133 @default.
- W4256123846 creator A5054148466 @default.
- W4256123846 creator A5056518806 @default.
- W4256123846 date "2021-02-09" @default.
- W4256123846 modified "2023-09-27" @default.
- W4256123846 title "Predictive Model and Feature Importance for Early Detection of Type II Diabetes Mellitus" @default.
- W4256123846 doi "https://doi.org/10.21203/rs.3.rs-172421/v1" @default.
- W4256123846 hasPublicationYear "2021" @default.
- W4256123846 type Work @default.
- W4256123846 citedByCount "0" @default.
- W4256123846 crossrefType "posted-content" @default.
- W4256123846 hasAuthorship W4256123846A5001569259 @default.
- W4256123846 hasAuthorship W4256123846A5004487353 @default.
- W4256123846 hasAuthorship W4256123846A5007988075 @default.
- W4256123846 hasAuthorship W4256123846A5013997143 @default.
- W4256123846 hasAuthorship W4256123846A5020921099 @default.
- W4256123846 hasAuthorship W4256123846A5031837478 @default.
- W4256123846 hasAuthorship W4256123846A5046597133 @default.
- W4256123846 hasAuthorship W4256123846A5054148466 @default.
- W4256123846 hasAuthorship W4256123846A5056518806 @default.
- W4256123846 hasBestOaLocation W42561238461 @default.
- W4256123846 hasConcept C119857082 @default.
- W4256123846 hasConcept C12267149 @default.
- W4256123846 hasConcept C134018914 @default.
- W4256123846 hasConcept C138602881 @default.
- W4256123846 hasConcept C153180895 @default.
- W4256123846 hasConcept C154945302 @default.
- W4256123846 hasConcept C2910068830 @default.
- W4256123846 hasConcept C33923547 @default.
- W4256123846 hasConcept C41008148 @default.
- W4256123846 hasConcept C52001869 @default.
- W4256123846 hasConcept C555293320 @default.
- W4256123846 hasConcept C58471807 @default.
- W4256123846 hasConcept C71924100 @default.
- W4256123846 hasConcept C84525736 @default.
- W4256123846 hasConcept C95623464 @default.
- W4256123846 hasConceptScore W4256123846C119857082 @default.
- W4256123846 hasConceptScore W4256123846C12267149 @default.
- W4256123846 hasConceptScore W4256123846C134018914 @default.
- W4256123846 hasConceptScore W4256123846C138602881 @default.
- W4256123846 hasConceptScore W4256123846C153180895 @default.
- W4256123846 hasConceptScore W4256123846C154945302 @default.
- W4256123846 hasConceptScore W4256123846C2910068830 @default.
- W4256123846 hasConceptScore W4256123846C33923547 @default.
- W4256123846 hasConceptScore W4256123846C41008148 @default.
- W4256123846 hasConceptScore W4256123846C52001869 @default.
- W4256123846 hasConceptScore W4256123846C555293320 @default.
- W4256123846 hasConceptScore W4256123846C58471807 @default.
- W4256123846 hasConceptScore W4256123846C71924100 @default.
- W4256123846 hasConceptScore W4256123846C84525736 @default.
- W4256123846 hasConceptScore W4256123846C95623464 @default.
- W4256123846 hasLocation W42561238461 @default.
- W4256123846 hasLocation W42561238462 @default.
- W4256123846 hasLocation W42561238463 @default.
- W4256123846 hasOpenAccess W4256123846 @default.
- W4256123846 hasPrimaryLocation W42561238461 @default.
- W4256123846 hasRelatedWork W1982718731 @default.
- W4256123846 hasRelatedWork W2595988085 @default.
- W4256123846 hasRelatedWork W3127425528 @default.
- W4256123846 hasRelatedWork W3178195535 @default.
- W4256123846 hasRelatedWork W3186233728 @default.
- W4256123846 hasRelatedWork W3204641204 @default.
- W4256123846 hasRelatedWork W3210918776 @default.
- W4256123846 hasRelatedWork W4205958290 @default.
- W4256123846 hasRelatedWork W4214820172 @default.
- W4256123846 hasRelatedWork W4361795583 @default.
- W4256123846 isParatext "false" @default.
- W4256123846 isRetracted "false" @default.
- W4256123846 workType "article" @default.