Matches in SemOpenAlex for { <https://semopenalex.org/work/W4256228148> ?p ?o ?g. }
- W4256228148 endingPage "43" @default.
- W4256228148 startingPage "1" @default.
- W4256228148 abstract "Different kinds of spectra are capable of finding multiway cuts corresponding to different optimization criteria. While eigenvalues give estimates for the objective functions of the discrete optimization problems, eigenvectors are used to find clusters of vertices which approximately solve the problems. These methods are reminiscent of some classical methods of multivariate statistical analysis. Throughout this chapter, methods of principal component analysis and correspondence analysis are used to solve quadratic placement tasks on weighted graphs and contingency tables. As a result, we get low dimensional representation of the graph's vertices or rows and columns of the contingency table by means of linear methods so that the representation somehow favors our classification criteria. Non‐linearities are treated by mapping the data into a feature space (reproducing kernel Hilbert space). The chapter also generalizes the notion of representation for joint distributions." @default.
- W4256228148 created "2022-05-12" @default.
- W4256228148 date "2013-07-04" @default.
- W4256228148 modified "2023-09-24" @default.
- W4256228148 title "Multivariate analysis techniques for representing graphs and contingency tables" @default.
- W4256228148 cites W1510073064 @default.
- W4256228148 cites W1515707356 @default.
- W4256228148 cites W179694669 @default.
- W4256228148 cites W1968766334 @default.
- W4256228148 cites W1970950689 @default.
- W4256228148 cites W1981025032 @default.
- W4256228148 cites W1986280275 @default.
- W4256228148 cites W1995228946 @default.
- W4256228148 cites W1996955268 @default.
- W4256228148 cites W2002276939 @default.
- W4256228148 cites W2005820104 @default.
- W4256228148 cites W2009233867 @default.
- W4256228148 cites W2018415308 @default.
- W4256228148 cites W2018582985 @default.
- W4256228148 cites W2030748132 @default.
- W4256228148 cites W2031342482 @default.
- W4256228148 cites W2034204728 @default.
- W4256228148 cites W2048413114 @default.
- W4256228148 cites W2050033479 @default.
- W4256228148 cites W2064902545 @default.
- W4256228148 cites W2071779309 @default.
- W4256228148 cites W2078831170 @default.
- W4256228148 cites W2095293504 @default.
- W4256228148 cites W2104925992 @default.
- W4256228148 cites W2109025268 @default.
- W4256228148 cites W2111754130 @default.
- W4256228148 cites W2113387946 @default.
- W4256228148 cites W2121947440 @default.
- W4256228148 cites W2124101779 @default.
- W4256228148 cites W2125050594 @default.
- W4256228148 cites W2132914434 @default.
- W4256228148 cites W2140095548 @default.
- W4256228148 cites W3021971632 @default.
- W4256228148 cites W3103788012 @default.
- W4256228148 cites W3123808662 @default.
- W4256228148 cites W3148981562 @default.
- W4256228148 doi "https://doi.org/10.1002/9781118650684.ch01" @default.
- W4256228148 hasPublicationYear "2013" @default.
- W4256228148 type Work @default.
- W4256228148 citedByCount "0" @default.
- W4256228148 crossrefType "other" @default.
- W4256228148 hasConcept C104140500 @default.
- W4256228148 hasConcept C105795698 @default.
- W4256228148 hasConcept C11413529 @default.
- W4256228148 hasConcept C114614502 @default.
- W4256228148 hasConcept C121332964 @default.
- W4256228148 hasConcept C122280245 @default.
- W4256228148 hasConcept C12267149 @default.
- W4256228148 hasConcept C124101348 @default.
- W4256228148 hasConcept C129844170 @default.
- W4256228148 hasConcept C132525143 @default.
- W4256228148 hasConcept C135598885 @default.
- W4256228148 hasConcept C148298330 @default.
- W4256228148 hasConcept C154945302 @default.
- W4256228148 hasConcept C158693339 @default.
- W4256228148 hasConcept C17744445 @default.
- W4256228148 hasConcept C182335926 @default.
- W4256228148 hasConcept C199539241 @default.
- W4256228148 hasConcept C202444582 @default.
- W4256228148 hasConcept C2524010 @default.
- W4256228148 hasConcept C27438332 @default.
- W4256228148 hasConcept C2776359362 @default.
- W4256228148 hasConcept C33923547 @default.
- W4256228148 hasConcept C41008148 @default.
- W4256228148 hasConcept C45235069 @default.
- W4256228148 hasConcept C62520636 @default.
- W4256228148 hasConcept C62799726 @default.
- W4256228148 hasConcept C77088390 @default.
- W4256228148 hasConcept C91998498 @default.
- W4256228148 hasConcept C94625758 @default.
- W4256228148 hasConceptScore W4256228148C104140500 @default.
- W4256228148 hasConceptScore W4256228148C105795698 @default.
- W4256228148 hasConceptScore W4256228148C11413529 @default.
- W4256228148 hasConceptScore W4256228148C114614502 @default.
- W4256228148 hasConceptScore W4256228148C121332964 @default.
- W4256228148 hasConceptScore W4256228148C122280245 @default.
- W4256228148 hasConceptScore W4256228148C12267149 @default.
- W4256228148 hasConceptScore W4256228148C124101348 @default.
- W4256228148 hasConceptScore W4256228148C129844170 @default.
- W4256228148 hasConceptScore W4256228148C132525143 @default.
- W4256228148 hasConceptScore W4256228148C135598885 @default.
- W4256228148 hasConceptScore W4256228148C148298330 @default.
- W4256228148 hasConceptScore W4256228148C154945302 @default.
- W4256228148 hasConceptScore W4256228148C158693339 @default.
- W4256228148 hasConceptScore W4256228148C17744445 @default.
- W4256228148 hasConceptScore W4256228148C182335926 @default.
- W4256228148 hasConceptScore W4256228148C199539241 @default.
- W4256228148 hasConceptScore W4256228148C202444582 @default.
- W4256228148 hasConceptScore W4256228148C2524010 @default.
- W4256228148 hasConceptScore W4256228148C27438332 @default.
- W4256228148 hasConceptScore W4256228148C2776359362 @default.
- W4256228148 hasConceptScore W4256228148C33923547 @default.
- W4256228148 hasConceptScore W4256228148C41008148 @default.