Matches in SemOpenAlex for { <https://semopenalex.org/work/W4256334612> ?p ?o ?g. }
- W4256334612 endingPage "940" @default.
- W4256334612 startingPage "927" @default.
- W4256334612 abstract "Genomics has been defined as the comprehensive study of whole sets of genes, gene products, and their interactions as opposed to the study of single genes or proteins. Microarray technology is one of many novel tools that are allowing global and high-throughput analysis of genes and gene products. In addition to an introduction on underlying principles, the current review focuses on the use of both complementary DNA and oligodeoxynucleotide microarrays in gene expression analysis. Genome-wide experiments generate a massive amount of data points that require systematic methods of analysis to extract biologically useful information. Accordingly, the current educational communication discusses different methods of data analysis, including supervised and unsupervised clustering algorithms. Illustrative clinical examples show clinical applications, including (1) identification of candidate genes or pathological pathways (ie, elucidation of pathogenesis); (2) identification of “new” molecular classes of diseases that may be relevant in disease reclassification, prognostication, and treatment selection (ie, class discovery); and (3) use of expression profiles of known disease classes to predict diagnosis and classification of unknown samples (ie, class prediction). The current review should serve as an introduction to the subject for clinician investigators, physicians and medical scientists in training, practicing clinicians, and other students of medicine. Genomics has been defined as the comprehensive study of whole sets of genes, gene products, and their interactions as opposed to the study of single genes or proteins. Microarray technology is one of many novel tools that are allowing global and high-throughput analysis of genes and gene products. In addition to an introduction on underlying principles, the current review focuses on the use of both complementary DNA and oligodeoxynucleotide microarrays in gene expression analysis. Genome-wide experiments generate a massive amount of data points that require systematic methods of analysis to extract biologically useful information. Accordingly, the current educational communication discusses different methods of data analysis, including supervised and unsupervised clustering algorithms. Illustrative clinical examples show clinical applications, including (1) identification of candidate genes or pathological pathways (ie, elucidation of pathogenesis); (2) identification of “new” molecular classes of diseases that may be relevant in disease reclassification, prognostication, and treatment selection (ie, class discovery); and (3) use of expression profiles of known disease classes to predict diagnosis and classification of unknown samples (ie, class prediction). The current review should serve as an introduction to the subject for clinician investigators, physicians and medical scientists in training, practicing clinicians, and other students of medicine." @default.
- W4256334612 created "2022-05-12" @default.
- W4256334612 creator A5016216479 @default.
- W4256334612 creator A5038929700 @default.
- W4256334612 creator A5054911795 @default.
- W4256334612 creator A5059729547 @default.
- W4256334612 creator A5077089290 @default.
- W4256334612 date "2002-09-01" @default.
- W4256334612 modified "2023-09-29" @default.
- W4256334612 title "Primer on Medical Genomics Part III: Microarray Experiments and Data Analysis" @default.
- W4256334612 cites W1544923801 @default.
- W4256334612 cites W1556472699 @default.
- W4256334612 cites W1569275112 @default.
- W4256334612 cites W1651215666 @default.
- W4256334612 cites W1744607538 @default.
- W4256334612 cites W1970156673 @default.
- W4256334612 cites W1970472404 @default.
- W4256334612 cites W1974416393 @default.
- W4256334612 cites W1992256609 @default.
- W4256334612 cites W2002278365 @default.
- W4256334612 cites W2002984698 @default.
- W4256334612 cites W2008233728 @default.
- W4256334612 cites W2014201926 @default.
- W4256334612 cites W2021147140 @default.
- W4256334612 cites W2027600997 @default.
- W4256334612 cites W2029441111 @default.
- W4256334612 cites W2036716099 @default.
- W4256334612 cites W2056237149 @default.
- W4256334612 cites W2056654393 @default.
- W4256334612 cites W2064208261 @default.
- W4256334612 cites W2065912508 @default.
- W4256334612 cites W2068171945 @default.
- W4256334612 cites W2072969249 @default.
- W4256334612 cites W2074881343 @default.
- W4256334612 cites W2087684630 @default.
- W4256334612 cites W2092840781 @default.
- W4256334612 cites W2094227339 @default.
- W4256334612 cites W2094613397 @default.
- W4256334612 cites W2099841076 @default.
- W4256334612 cites W2102794349 @default.
- W4256334612 cites W2107966042 @default.
- W4256334612 cites W2109363337 @default.
- W4256334612 cites W2117270410 @default.
- W4256334612 cites W2119166302 @default.
- W4256334612 cites W2130000923 @default.
- W4256334612 cites W2135000328 @default.
- W4256334612 cites W2135187880 @default.
- W4256334612 cites W2144792853 @default.
- W4256334612 cites W2146264532 @default.
- W4256334612 cites W2147246240 @default.
- W4256334612 cites W2148101811 @default.
- W4256334612 cites W2150926065 @default.
- W4256334612 cites W2156246479 @default.
- W4256334612 cites W2158227917 @default.
- W4256334612 cites W2961146810 @default.
- W4256334612 cites W4233751197 @default.
- W4256334612 cites W4249437218 @default.
- W4256334612 cites W4376043923 @default.
- W4256334612 cites W61539548 @default.
- W4256334612 doi "https://doi.org/10.1016/s0025-6196(11)62260-x" @default.
- W4256334612 hasPublicationYear "2002" @default.
- W4256334612 type Work @default.
- W4256334612 citedByCount "35" @default.
- W4256334612 countsByYear W42563346122012 @default.
- W4256334612 countsByYear W42563346122013 @default.
- W4256334612 countsByYear W42563346122014 @default.
- W4256334612 countsByYear W42563346122015 @default.
- W4256334612 countsByYear W42563346122017 @default.
- W4256334612 countsByYear W42563346122019 @default.
- W4256334612 crossrefType "journal-article" @default.
- W4256334612 hasAuthorship W4256334612A5016216479 @default.
- W4256334612 hasAuthorship W4256334612A5038929700 @default.
- W4256334612 hasAuthorship W4256334612A5054911795 @default.
- W4256334612 hasAuthorship W4256334612A5059729547 @default.
- W4256334612 hasAuthorship W4256334612A5077089290 @default.
- W4256334612 hasConcept C104317684 @default.
- W4256334612 hasConcept C116834253 @default.
- W4256334612 hasConcept C119857082 @default.
- W4256334612 hasConcept C141231307 @default.
- W4256334612 hasConcept C150194340 @default.
- W4256334612 hasConcept C161078062 @default.
- W4256334612 hasConcept C189206191 @default.
- W4256334612 hasConcept C41008148 @default.
- W4256334612 hasConcept C54355233 @default.
- W4256334612 hasConcept C548314002 @default.
- W4256334612 hasConcept C59822182 @default.
- W4256334612 hasConcept C60644358 @default.
- W4256334612 hasConcept C70721500 @default.
- W4256334612 hasConcept C71924100 @default.
- W4256334612 hasConcept C73555534 @default.
- W4256334612 hasConcept C8415881 @default.
- W4256334612 hasConcept C86803240 @default.
- W4256334612 hasConcept C95371953 @default.
- W4256334612 hasConceptScore W4256334612C104317684 @default.
- W4256334612 hasConceptScore W4256334612C116834253 @default.
- W4256334612 hasConceptScore W4256334612C119857082 @default.
- W4256334612 hasConceptScore W4256334612C141231307 @default.
- W4256334612 hasConceptScore W4256334612C150194340 @default.