Matches in SemOpenAlex for { <https://semopenalex.org/work/W4256677103> ?p ?o ?g. }
- W4256677103 endingPage "270" @default.
- W4256677103 startingPage "249" @default.
- W4256677103 abstract "Digital terrain models are invaluable datasets that are frequently used for visualizing, modeling, and analyzing Earth surface processes. Accurate models covering local scale landscape features are often very expensive and have poor temporal resolution. This research investigates the utility of UAV acquired imagery for generating high resolution terrain models and provides a detailed accuracy assessment according to recommended protocols. High resolution UAV imagery was acquired over a localized dune complex in southwestern Manitoba, Canada and two alternative workflows were evaluated for extracting point clouds. UAV-derived data points were then compared to reference data sets acquired using mapping grade GPS receivers and a total station. Results indicated that the UAV imagery was capable of producing dense point clouds and high resolution terrain models with mean errors as low as -0.15 m and RMSE values of 0.42 m depending on the resolution of the image dataset and workflow employed." @default.
- W4256677103 created "2022-05-12" @default.
- W4256677103 creator A5078877981 @default.
- W4256677103 creator A5086993616 @default.
- W4256677103 date "2019-01-01" @default.
- W4256677103 modified "2023-09-26" @default.
- W4256677103 title "Alternative Methods for Developing and Assessing the Accuracy of UAV-Derived DEMs" @default.
- W4256677103 cites W1928585742 @default.
- W4256677103 cites W1968220697 @default.
- W4256677103 cites W1972951236 @default.
- W4256677103 cites W1974913876 @default.
- W4256677103 cites W1975989939 @default.
- W4256677103 cites W1980624508 @default.
- W4256677103 cites W1983818779 @default.
- W4256677103 cites W1984732831 @default.
- W4256677103 cites W1985338631 @default.
- W4256677103 cites W1988696756 @default.
- W4256677103 cites W1989476847 @default.
- W4256677103 cites W1991691127 @default.
- W4256677103 cites W1995883336 @default.
- W4256677103 cites W1999262064 @default.
- W4256677103 cites W2001437570 @default.
- W4256677103 cites W2006007257 @default.
- W4256677103 cites W2011738126 @default.
- W4256677103 cites W2021348337 @default.
- W4256677103 cites W2021858660 @default.
- W4256677103 cites W2022591200 @default.
- W4256677103 cites W2023660727 @default.
- W4256677103 cites W2023847423 @default.
- W4256677103 cites W2038705556 @default.
- W4256677103 cites W2041886437 @default.
- W4256677103 cites W2042195394 @default.
- W4256677103 cites W2052002626 @default.
- W4256677103 cites W2053164972 @default.
- W4256677103 cites W2055524773 @default.
- W4256677103 cites W2059842332 @default.
- W4256677103 cites W2060581647 @default.
- W4256677103 cites W2062526721 @default.
- W4256677103 cites W2063914704 @default.
- W4256677103 cites W2079958139 @default.
- W4256677103 cites W2084533903 @default.
- W4256677103 cites W2093929540 @default.
- W4256677103 cites W2095608002 @default.
- W4256677103 cites W2109931483 @default.
- W4256677103 cites W2110441968 @default.
- W4256677103 cites W2113901002 @default.
- W4256677103 cites W2114080327 @default.
- W4256677103 cites W2118172838 @default.
- W4256677103 cites W2120367266 @default.
- W4256677103 cites W2121264346 @default.
- W4256677103 cites W2135819668 @default.
- W4256677103 cites W2136757478 @default.
- W4256677103 cites W2151859003 @default.
- W4256677103 cites W2171466305 @default.
- W4256677103 cites W4250929171 @default.
- W4256677103 doi "https://doi.org/10.4018/978-1-5225-8365-3.ch011" @default.
- W4256677103 hasPublicationYear "2019" @default.
- W4256677103 type Work @default.
- W4256677103 citedByCount "0" @default.
- W4256677103 crossrefType "book-chapter" @default.
- W4256677103 hasAuthorship W4256677103A5078877981 @default.
- W4256677103 hasAuthorship W4256677103A5086993616 @default.
- W4256677103 hasConcept C117455697 @default.
- W4256677103 hasConcept C131979681 @default.
- W4256677103 hasConcept C154945302 @default.
- W4256677103 hasConcept C161840515 @default.
- W4256677103 hasConcept C177212765 @default.
- W4256677103 hasConcept C181843262 @default.
- W4256677103 hasConcept C205649164 @default.
- W4256677103 hasConcept C2524010 @default.
- W4256677103 hasConcept C2778755073 @default.
- W4256677103 hasConcept C28719098 @default.
- W4256677103 hasConcept C2983128922 @default.
- W4256677103 hasConcept C3020199158 @default.
- W4256677103 hasConcept C31972630 @default.
- W4256677103 hasConcept C33923547 @default.
- W4256677103 hasConcept C41008148 @default.
- W4256677103 hasConcept C51399673 @default.
- W4256677103 hasConcept C58640448 @default.
- W4256677103 hasConcept C60229501 @default.
- W4256677103 hasConcept C62649853 @default.
- W4256677103 hasConcept C76155785 @default.
- W4256677103 hasConcept C77088390 @default.
- W4256677103 hasConcept C99695388 @default.
- W4256677103 hasConceptScore W4256677103C117455697 @default.
- W4256677103 hasConceptScore W4256677103C131979681 @default.
- W4256677103 hasConceptScore W4256677103C154945302 @default.
- W4256677103 hasConceptScore W4256677103C161840515 @default.
- W4256677103 hasConceptScore W4256677103C177212765 @default.
- W4256677103 hasConceptScore W4256677103C181843262 @default.
- W4256677103 hasConceptScore W4256677103C205649164 @default.
- W4256677103 hasConceptScore W4256677103C2524010 @default.
- W4256677103 hasConceptScore W4256677103C2778755073 @default.
- W4256677103 hasConceptScore W4256677103C28719098 @default.
- W4256677103 hasConceptScore W4256677103C2983128922 @default.
- W4256677103 hasConceptScore W4256677103C3020199158 @default.
- W4256677103 hasConceptScore W4256677103C31972630 @default.
- W4256677103 hasConceptScore W4256677103C33923547 @default.