Matches in SemOpenAlex for { <https://semopenalex.org/work/W426385280> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W426385280 endingPage "467" @default.
- W426385280 startingPage "458" @default.
- W426385280 abstract "An experimental and analytical study on the heat transfer and pressure loss of a triangular cooling flow channel with and without turbulent ribs has been conducted for high reliability cooling design of gas turbine blades. In addition, the means of enhancing and controlling the local heat transfer on the surface of a triangular ribbed channel, utilizing the secondary flow from the gap between side-wall and rib, are proposed. The contours of experimental and analytical Nusselt number on the ribbed channel with the gap show the enhancement of heat transfer by re-attachment flow, swirl flow, and secondary flow from the gap. Optimizing the length of the gap enables the enhancement of the heat transfer around the trailing edge and to assure mean heat transfer in the whole of the cooling flow passage. NOMENCLATURE de Equivalent hydraulic diameter f Friction factor L Distance Nu Nusselt number ∆p Pressure drop q Heat flux Re Reynolds number (= ρvde / μ) T Temperature v Velocity h Heat transfer coefficient λ Thermal conductivity μ Viscosity ρ Density δ Wall thickness Subscript: f Fluid loss Heat loss m Material wi Inner surface of the wall wo Outer surface of the wall INTRODUCTION Advanced gas turbine blades are exposed to high heat load and thermal stress. The internal convection cooling with ribbed channels is often adopted in cooled turbine blades to satisfy their life. Many studies of the heat transfer and pressure loss in the square or rectangular ribbed channel have been conducted. (Bargraff et al., 1970 Han et al., 1985 Anzai et al., 1991 Taslim et al., 1994) However, there are various geometries of the cross section of ribbed channel installed in cooled turbine blades. Therefore, the heat transfer and pressure loss characteristics of various cross-sectioned channels have also been studied. Metzger et al. (1987) investigated the heat transfer and pressure loss characteristics of a triangular channel which simulate the cooling channel at the leading edge. The effect of aspect ratio (height/width) in rectangular channel was reported by Han et al. (1989) and Tasilim et al. (1988). The heat transfer and pressure loss characteristics of a thin rectangular channel which simulates the cooling channel around a trailing edge is the subject of the study by Kiml et al. (2000, 2001, 2002). At the trailing edge of cooled turbine blades, the cross section of the cooling channel is a thin triangle. The heat transfer distribution in such a channel is non-uniform and complicated. In addition, it is difficult to cool the trailing edge where the heat transfer area of the gas side is large, compared with that of the cooling side. Therefore, cooling air ejection has often been utilized. Taslim et al. (1997) investigated the heat transfer and pressure loss characteristics of a thin triangular channel with and without air ejection. However, it degrades the aerodynamics performance and cannot be applied to closed circuit steam-cooled turbine blade as shown in Fig.1. To attain high reliability cooling design of the trailing edge, it is indispensable to understand and to predict the local heat transfer coefficient in a triangular ribbed channel precisely. In this study, the local heat transfer and pressure loss in a triangular ribbed channel is investigated experimentally, and the means of predicting them by CFD (Computational Fluid Dynamics) is investigated. Also, the means of enhancing and controlling the local heat transfer coefficient on the surface of a triangular ribbed channel, by utilizing the secondary flow from the gap between side-wall and rib, is introduced and confirmed the effect experimentally and analytically. Fig.1 Cross section of steam cooled turbine blade IGTC2003Tokyo TS-080 Copyright © 2003 by GTSJ Manuscript Received on May 27, 2003 Proceedings of the International Gas Turbine Congress 2003 Tokyo November 2-7, 2003" @default.
- W426385280 created "2016-06-24" @default.
- W426385280 creator A5050033980 @default.
- W426385280 creator A5054497666 @default.
- W426385280 creator A5065047376 @default.
- W426385280 creator A5091326359 @default.
- W426385280 date "2005-09-20" @default.
- W426385280 modified "2023-09-24" @default.
- W426385280 title "Heat Transfer Characteristic of a Triangular Channel with Turbulence Promoter" @default.
- W426385280 cites W1979324457 @default.
- W426385280 cites W1996080361 @default.
- W426385280 cites W2032777079 @default.
- W426385280 cites W2045075024 @default.
- W426385280 cites W3184518629 @default.
- W426385280 hasPublicationYear "2005" @default.
- W426385280 type Work @default.
- W426385280 sameAs 426385280 @default.
- W426385280 citedByCount "1" @default.
- W426385280 crossrefType "journal-article" @default.
- W426385280 hasAuthorship W426385280A5050033980 @default.
- W426385280 hasAuthorship W426385280A5054497666 @default.
- W426385280 hasAuthorship W426385280A5065047376 @default.
- W426385280 hasAuthorship W426385280A5091326359 @default.
- W426385280 hasConcept C114088122 @default.
- W426385280 hasConcept C121332964 @default.
- W426385280 hasConcept C130230704 @default.
- W426385280 hasConcept C159188206 @default.
- W426385280 hasConcept C182748727 @default.
- W426385280 hasConcept C192562407 @default.
- W426385280 hasConcept C196558001 @default.
- W426385280 hasConcept C2777777821 @default.
- W426385280 hasConcept C29700514 @default.
- W426385280 hasConcept C41231900 @default.
- W426385280 hasConcept C50517652 @default.
- W426385280 hasConcept C57879066 @default.
- W426385280 hasConcept C97355855 @default.
- W426385280 hasConceptScore W426385280C114088122 @default.
- W426385280 hasConceptScore W426385280C121332964 @default.
- W426385280 hasConceptScore W426385280C130230704 @default.
- W426385280 hasConceptScore W426385280C159188206 @default.
- W426385280 hasConceptScore W426385280C182748727 @default.
- W426385280 hasConceptScore W426385280C192562407 @default.
- W426385280 hasConceptScore W426385280C196558001 @default.
- W426385280 hasConceptScore W426385280C2777777821 @default.
- W426385280 hasConceptScore W426385280C29700514 @default.
- W426385280 hasConceptScore W426385280C41231900 @default.
- W426385280 hasConceptScore W426385280C50517652 @default.
- W426385280 hasConceptScore W426385280C57879066 @default.
- W426385280 hasConceptScore W426385280C97355855 @default.
- W426385280 hasIssue "5" @default.
- W426385280 hasLocation W4263852801 @default.
- W426385280 hasOpenAccess W426385280 @default.
- W426385280 hasPrimaryLocation W4263852801 @default.
- W426385280 hasRelatedWork W1454797031 @default.
- W426385280 hasRelatedWork W1751928757 @default.
- W426385280 hasRelatedWork W1979584931 @default.
- W426385280 hasRelatedWork W1982866148 @default.
- W426385280 hasRelatedWork W1983468605 @default.
- W426385280 hasRelatedWork W2035603455 @default.
- W426385280 hasRelatedWork W2046677443 @default.
- W426385280 hasRelatedWork W2048432922 @default.
- W426385280 hasRelatedWork W2077979783 @default.
- W426385280 hasRelatedWork W2091780763 @default.
- W426385280 hasRelatedWork W2347444834 @default.
- W426385280 hasRelatedWork W2350483468 @default.
- W426385280 hasRelatedWork W2355205677 @default.
- W426385280 hasRelatedWork W2379739991 @default.
- W426385280 hasRelatedWork W2391160495 @default.
- W426385280 hasRelatedWork W2529775267 @default.
- W426385280 hasRelatedWork W2742691986 @default.
- W426385280 hasRelatedWork W2767672143 @default.
- W426385280 hasRelatedWork W2977785766 @default.
- W426385280 hasRelatedWork W3011114708 @default.
- W426385280 hasVolume "33" @default.
- W426385280 isParatext "false" @default.
- W426385280 isRetracted "false" @default.
- W426385280 magId "426385280" @default.
- W426385280 workType "article" @default.