Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280488910> ?p ?o ?g. }
- W4280488910 endingPage "52" @default.
- W4280488910 startingPage "46" @default.
- W4280488910 abstract "Cervical cancer is the fourth most common cancer in women, and its precise detection plays a critical role in disease treatment and prognosis prediction. Fluorodeoxyglucose positron emission tomography and computed tomography, i.e., FDG-PET/CT and PET/CT, have established roles with superior sensitivity and specificity in most cancer imaging applications. However, a typical FDG-PET/CT analysis involves the time-consuming process of interpreting hundreds of images, and the intense image screening work has greatly hindered clinicians. We propose a computer-aided deep learning-based framework to detect cervical cancer using multimodal medical images to increase the efficiency of clinical diagnosis. This framework has three components: image registration, multimodal image fusion, and lesion object detection. Compared to traditional approaches, our adaptive image fusion method fuses multimodal medical images. We discuss the performance of deep learning in each modality, and we conduct extensive experiments to compare the performance of different image fusion methods with some state-of-the-art (SOTA) object-detection deep learning-based methods in images with different modalities. Compared with PET, which has the highest recognition accuracy in single-modality images, the recognition accuracy of our proposed method on multiple object detection models is improved by an average of 6.06%. And compared with the best results of other multimodal fusion methods, our results have an average improvement of 8.9%." @default.
- W4280488910 created "2022-05-22" @default.
- W4280488910 creator A5014075355 @default.
- W4280488910 creator A5022330599 @default.
- W4280488910 creator A5024543314 @default.
- W4280488910 creator A5041278405 @default.
- W4280488910 creator A5053690032 @default.
- W4280488910 creator A5089582342 @default.
- W4280488910 date "2022-09-01" @default.
- W4280488910 modified "2023-09-30" @default.
- W4280488910 title "Deep learning-based multimodal image analysis for cervical cancer detection" @default.
- W4280488910 cites W1498436455 @default.
- W4280488910 cites W2078644310 @default.
- W4280488910 cites W2109255472 @default.
- W4280488910 cites W2138550445 @default.
- W4280488910 cites W2140139548 @default.
- W4280488910 cites W2145023731 @default.
- W4280488910 cites W2146824523 @default.
- W4280488910 cites W2157380596 @default.
- W4280488910 cites W2311838924 @default.
- W4280488910 cites W2411377185 @default.
- W4280488910 cites W2788633781 @default.
- W4280488910 cites W2796672611 @default.
- W4280488910 cites W2896817483 @default.
- W4280488910 cites W2919115771 @default.
- W4280488910 cites W2947683972 @default.
- W4280488910 cites W2954495564 @default.
- W4280488910 cites W2962834855 @default.
- W4280488910 cites W2963150697 @default.
- W4280488910 cites W2981914352 @default.
- W4280488910 cites W2985928856 @default.
- W4280488910 cites W2993250673 @default.
- W4280488910 cites W2996165363 @default.
- W4280488910 cites W3042011474 @default.
- W4280488910 cites W3087463599 @default.
- W4280488910 cites W3088623196 @default.
- W4280488910 cites W3101294892 @default.
- W4280488910 cites W3110391382 @default.
- W4280488910 cites W3212798786 @default.
- W4280488910 cites W4211097225 @default.
- W4280488910 cites W4281264425 @default.
- W4280488910 cites W639708223 @default.
- W4280488910 doi "https://doi.org/10.1016/j.ymeth.2022.05.004" @default.
- W4280488910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35598831" @default.
- W4280488910 hasPublicationYear "2022" @default.
- W4280488910 type Work @default.
- W4280488910 citedByCount "6" @default.
- W4280488910 countsByYear W42804889102022 @default.
- W4280488910 countsByYear W42804889102023 @default.
- W4280488910 crossrefType "journal-article" @default.
- W4280488910 hasAuthorship W4280488910A5014075355 @default.
- W4280488910 hasAuthorship W4280488910A5022330599 @default.
- W4280488910 hasAuthorship W4280488910A5024543314 @default.
- W4280488910 hasAuthorship W4280488910A5041278405 @default.
- W4280488910 hasAuthorship W4280488910A5053690032 @default.
- W4280488910 hasAuthorship W4280488910A5089582342 @default.
- W4280488910 hasConcept C108583219 @default.
- W4280488910 hasConcept C115961682 @default.
- W4280488910 hasConcept C121608353 @default.
- W4280488910 hasConcept C126322002 @default.
- W4280488910 hasConcept C126838900 @default.
- W4280488910 hasConcept C153180895 @default.
- W4280488910 hasConcept C154945302 @default.
- W4280488910 hasConcept C166704113 @default.
- W4280488910 hasConcept C2775842073 @default.
- W4280488910 hasConcept C2778220009 @default.
- W4280488910 hasConcept C2780226545 @default.
- W4280488910 hasConcept C31601959 @default.
- W4280488910 hasConcept C31972630 @default.
- W4280488910 hasConcept C41008148 @default.
- W4280488910 hasConcept C69744172 @default.
- W4280488910 hasConcept C71924100 @default.
- W4280488910 hasConceptScore W4280488910C108583219 @default.
- W4280488910 hasConceptScore W4280488910C115961682 @default.
- W4280488910 hasConceptScore W4280488910C121608353 @default.
- W4280488910 hasConceptScore W4280488910C126322002 @default.
- W4280488910 hasConceptScore W4280488910C126838900 @default.
- W4280488910 hasConceptScore W4280488910C153180895 @default.
- W4280488910 hasConceptScore W4280488910C154945302 @default.
- W4280488910 hasConceptScore W4280488910C166704113 @default.
- W4280488910 hasConceptScore W4280488910C2775842073 @default.
- W4280488910 hasConceptScore W4280488910C2778220009 @default.
- W4280488910 hasConceptScore W4280488910C2780226545 @default.
- W4280488910 hasConceptScore W4280488910C31601959 @default.
- W4280488910 hasConceptScore W4280488910C31972630 @default.
- W4280488910 hasConceptScore W4280488910C41008148 @default.
- W4280488910 hasConceptScore W4280488910C69744172 @default.
- W4280488910 hasConceptScore W4280488910C71924100 @default.
- W4280488910 hasLocation W42804889101 @default.
- W4280488910 hasLocation W42804889102 @default.
- W4280488910 hasOpenAccess W4280488910 @default.
- W4280488910 hasPrimaryLocation W42804889101 @default.
- W4280488910 hasRelatedWork W1986027773 @default.
- W4280488910 hasRelatedWork W1999927160 @default.
- W4280488910 hasRelatedWork W2009466720 @default.
- W4280488910 hasRelatedWork W2011443206 @default.
- W4280488910 hasRelatedWork W2100278578 @default.
- W4280488910 hasRelatedWork W2419576664 @default.