Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280489602> ?p ?o ?g. }
- W4280489602 endingPage "432" @default.
- W4280489602 startingPage "417" @default.
- W4280489602 abstract "Structural health monitoring systems must provide accuracy and robustness in predicting the structure’s health using the minimum intervention to ensure commercial viability. Characterization of impact is useful in assessing its severity, deciding if detailed damage analysis is necessary, and re-evaluating the present health of the structure under monitoring with better confidence. In this characterization process, the impact location is significant since some positions within a structure are more sensitive to damage. The inherent noise and uncertainties present in the sensor response pose a substantial hurdle to estimating the external impact correctly. This paper quantitatively compares three of the widely used neural networks, namely, Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and Long Short-Term Memory network (LSTM), to estimate impact location from the lead zirconate titanate (PZT) sensor response. For this purpose, a square aluminum plate of 500 × 500 mm was equipped with four PZT sensors; each placed 100 mm away in both the plate directions from a corner and impact loads were given on a grid covering the whole plate. The PZT responses were used to train the three neural networks under study here, and their estimations were compared based on the Mean Absolute Error (MAE). In addition, increasing Gaussian noise was added to the PZT responses, and the robustness of the three neural networks was monitored. It was found that the ANN gives better accuracy with a Mean Absolute Error of 22 mm compared to Convolutional Neural Network (MAE = 31 mm) and Long Short-Term Memory (MAE = 25 mm). However, CNN is more robust when encountering noise with a 2% reduction in accuracy, while LSTM and ANN lost 7% and 11% accuracy, respectively." @default.
- W4280489602 created "2022-05-22" @default.
- W4280489602 creator A5017250488 @default.
- W4280489602 creator A5032347358 @default.
- W4280489602 creator A5047166629 @default.
- W4280489602 creator A5056221175 @default.
- W4280489602 creator A5082663200 @default.
- W4280489602 date "2022-05-13" @default.
- W4280489602 modified "2023-09-30" @default.
- W4280489602 title "Comparison of neural networks based on accuracy and robustness in identifying impact location for structural health monitoring applications" @default.
- W4280489602 cites W1689711448 @default.
- W4280489602 cites W1817332689 @default.
- W4280489602 cites W1966885922 @default.
- W4280489602 cites W1993267579 @default.
- W4280489602 cites W2001401234 @default.
- W4280489602 cites W2006252838 @default.
- W4280489602 cites W2006310978 @default.
- W4280489602 cites W2015940557 @default.
- W4280489602 cites W2027456229 @default.
- W4280489602 cites W2029209206 @default.
- W4280489602 cites W2040981681 @default.
- W4280489602 cites W2046804411 @default.
- W4280489602 cites W2054944014 @default.
- W4280489602 cites W2068284988 @default.
- W4280489602 cites W2076063813 @default.
- W4280489602 cites W2098107278 @default.
- W4280489602 cites W2103496339 @default.
- W4280489602 cites W2112606365 @default.
- W4280489602 cites W2141125852 @default.
- W4280489602 cites W2154741779 @default.
- W4280489602 cites W2180748755 @default.
- W4280489602 cites W2291961022 @default.
- W4280489602 cites W2342792048 @default.
- W4280489602 cites W2461729787 @default.
- W4280489602 cites W2538775691 @default.
- W4280489602 cites W2556345765 @default.
- W4280489602 cites W2598525681 @default.
- W4280489602 cites W2605617459 @default.
- W4280489602 cites W2614221804 @default.
- W4280489602 cites W2731461611 @default.
- W4280489602 cites W2765854388 @default.
- W4280489602 cites W2766193578 @default.
- W4280489602 cites W2802862742 @default.
- W4280489602 cites W2909822893 @default.
- W4280489602 cites W2913869731 @default.
- W4280489602 cites W2915660500 @default.
- W4280489602 cites W2922422128 @default.
- W4280489602 cites W2923473542 @default.
- W4280489602 cites W2935804788 @default.
- W4280489602 cites W2960009221 @default.
- W4280489602 cites W2960179461 @default.
- W4280489602 cites W2962949934 @default.
- W4280489602 cites W2969577109 @default.
- W4280489602 cites W2981208204 @default.
- W4280489602 cites W2996017270 @default.
- W4280489602 cites W3009080359 @default.
- W4280489602 cites W3031149341 @default.
- W4280489602 cites W3035500672 @default.
- W4280489602 cites W3093468414 @default.
- W4280489602 cites W3101806332 @default.
- W4280489602 cites W3103145119 @default.
- W4280489602 cites W3176707157 @default.
- W4280489602 cites W4213456223 @default.
- W4280489602 cites W632717832 @default.
- W4280489602 doi "https://doi.org/10.1177/14759217221098569" @default.
- W4280489602 hasPublicationYear "2022" @default.
- W4280489602 type Work @default.
- W4280489602 citedByCount "6" @default.
- W4280489602 countsByYear W42804896022022 @default.
- W4280489602 countsByYear W42804896022023 @default.
- W4280489602 crossrefType "journal-article" @default.
- W4280489602 hasAuthorship W4280489602A5017250488 @default.
- W4280489602 hasAuthorship W4280489602A5032347358 @default.
- W4280489602 hasAuthorship W4280489602A5047166629 @default.
- W4280489602 hasAuthorship W4280489602A5056221175 @default.
- W4280489602 hasAuthorship W4280489602A5082663200 @default.
- W4280489602 hasConcept C104317684 @default.
- W4280489602 hasConcept C105795698 @default.
- W4280489602 hasConcept C11413529 @default.
- W4280489602 hasConcept C115961682 @default.
- W4280489602 hasConcept C119857082 @default.
- W4280489602 hasConcept C127413603 @default.
- W4280489602 hasConcept C139945424 @default.
- W4280489602 hasConcept C153180895 @default.
- W4280489602 hasConcept C154945302 @default.
- W4280489602 hasConcept C185592680 @default.
- W4280489602 hasConcept C22679943 @default.
- W4280489602 hasConcept C2776247918 @default.
- W4280489602 hasConcept C33923547 @default.
- W4280489602 hasConcept C41008148 @default.
- W4280489602 hasConcept C4199805 @default.
- W4280489602 hasConcept C50644808 @default.
- W4280489602 hasConcept C55493867 @default.
- W4280489602 hasConcept C63479239 @default.
- W4280489602 hasConcept C66938386 @default.
- W4280489602 hasConcept C81363708 @default.
- W4280489602 hasConcept C81692654 @default.
- W4280489602 hasConcept C99498987 @default.